Zohreh Khavandgar
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zohreh Khavandgar.
Journal of Cell Biology | 2011
Zohreh Khavandgar; Christophe Poirier; Christopher J. Clarke; Jingjing Li; Nicholas Wang; Marc D. McKee; Yusuf A. Hannun; Monzur Murshed
nSMase2, which cleaves sphingomyelin to generate bioactive lipids, is required for chondrocyte apoptosis and, cell autonomously, for bone mineralization.
Bone | 2011
Jingjing Li; Zohreh Khavandgar; Sue Hwa Lin; Monzur Murshed
Lithium inhibition of glycogen synthase kinase3 (GSK3) activity has been shown to mimic the canonical WNT signaling. Analogous to WNT, lithium prevents GSK3-mediated phosphorylation of cytosolic transcription factor β-catenin and its subsequent degradation by the proteasome complex. Although stabilization of β-catenin in osteoblasts has been shown to promote bone mass accrual in a mouse model, several studies reported inhibitory effects of lithium supplements on the osteogenic differentiation of cultured mesenchymal stem cells. One possible explanation for these apparent contradictory findings might be that lithium affects the differentiation of osteoblast progenitors through additional signaling events, which independently or in concert with WNT signaling, affect the bone resorption activities in vivo. In the current study, we used murine MC3T3-E1 pre-osteoblasts and a pluripotent mesenchymal cell line C2C12 to investigate lithium effects during the early stages of osteoblast differentiation. We demonstrate here that lithium inhibits BMP-2 signaling to affect osteogenic differentiation in both cell lines. Lithium treatment reduces BMP-2-induced SMAD 1,5,8 phosphorylation in both MC3T3-E1 and C2C12 cells without affecting their dephosphorylation. Additionally, in MC3T3-E1 cells, lithium attenuates BMP-2-induced osteogenic differentiation through GSK3 inhibition; while in C2C12 cells, these negative effects of lithium ions on BMP-2 signaling do not rely on GSK3 inhibition or activation of canonical WNT signaling. Our work suggests the presence of a novel GSK3/WNT-independent mechanism of lithium action during the early stages of osteogenic differentiation.
Molecular Cancer Therapeutics | 2012
Marisa Meyers-Needham; Jocelyn A. Lewis; Salih Gencer; R. David Sentelle; Sahar A. Saddoughi; Christopher J. Clarke; Yusuf A. Hannun; Haakan R Norell; Telma Martins da Palma; Michael I. Nishimura; Jacqueline M. Kraveka; Zohreh Khavandgar; Monzur Murshed; M. Ozgur Cevik; Besim Ogretmen
Sonic hedgehog (SHh) signaling is important in the pathogenesis of various human cancers, such as medulloblastomas, and it has been identified as a valid target for anticancer therapeutics. The SHh inhibitor cyclopamine induces apoptosis. The bioactive sphingolipid ceramide mediates cell death in response to various chemotherapeutic agents; however, ceramides roles/mechanisms in cyclopamine-induced apoptosis are unknown. Here, we report that cyclopamine mediates ceramide generation selectively via induction of neutral sphingomyelin phosphodiesterase 3, SMPD3 (nSMase2) in Daoy human medulloblastoma cells. Importantly, short interfering RNA-mediated knockdown of nSMase2 prevented cyclopamine-induced ceramide generation and protected Daoy cells from drug-induced apoptosis. Accordingly, ectopic wild-type N-SMase2 caused cell death, compared with controls, which express the catalytically inactive N-SMase2 mutant. Interestingly, knockdown of smoothened (Smo), a target protein for cyclopamine, or Gli1, a downstream signaling transcription factor of Smo, did not affect nSMase2. Mechanistically, our data showed that cyclopamine induced nSMase2 and cell death selectively via increased nitric oxide (NO) generation by neuronal-nitric oxide synthase (n-NOS) induction, in Daoy medulloblastoma, and multiple other human cancer cell lines. Knockdown of n-NOS prevented nSMase2 induction and cell death in response to cyclopamine. Accordingly, N-SMase2 activity-deficient skin fibroblasts isolated from homozygous fro/fro (fragilitas ossium) mice exhibited resistance to NO-induced cell death. Thus, our data suggest a novel off-target function of cyclopamine in inducing apoptosis, at least in part, by n-NOS/NO-dependent induction of N-SMase2/ceramide axis, independent of Smo/Gli inhibition. Mol Cancer Ther; 11(5); 1092–102. ©2012 AACR.
Journal of Bone and Mineral Research | 2014
Zohreh Khavandgar; Hassem Roman; Jingjing Li; Sara Lee; Hojatollah Vali; Juergen Brinckmann; Elaine C. Davis; Monzur Murshed
Matrix gla protein (MGP) is a potent inhibitor of extracellular matrix (ECM) mineralization. MGP‐deficiency in humans leads to Keutel syndrome, a rare genetic disease hallmarked by abnormal soft tissue calcification. MGP‐deficient (Mgp–/–) mice show progressive deposition of hydroxyapatite minerals in the arterial walls and die within 2 months of age. The mechanism of antimineralization function of MGP is not fully understood. We examined the progression of vascular calcification and expression of several chondrogenic/osteogenic markers in the thoracic aortas of Mgp–/– mice at various ages. Although cells with chondrocyte‐like morphology have been reported in the calcified aorta, our gene expression data indicate that chondrogenic/osteogenic markers are not upregulated in the arteries prior to the initiation of calcification. Interestingly, arterial calcification in Mgp–/– mice appears first in the elastic laminae. Considering the known mineral scaffolding function of elastin (ELN), a major elastic lamina protein, we hypothesize that elastin content in the laminae is a critical determinant for arterial calcification in Mgp–/– mice. To investigate this, we performed micro–computed tomography (µCT) and histological analyses of the aortas of Mgp–/–;Eln+/– mice and show that elastin haploinsufficiency significantly reduces arterial calcification in this strain. Our data suggest that MGP deficiency leads to alterations of vascular ECM that may in turn initiate arterial calcification.
Biochimica et Biophysica Acta | 2014
Zhuo Li; Gengshu Wu; Roger B. Sher; Zohreh Khavandgar; Martin Hermansson; Gregory A. Cox; Michael R. Doschak; Monzur Murshed; Frank Beier; Dennis E. Vance
BACKGROUND Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb(-/-) mice display neonatal forelimb bone deformations. METHODS To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb(-/-) mice. RESULTS The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb(-/-) mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb(-/-) mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb(-/-) mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb(-/-) mice contained fewer osteoclasts along the cartilage/bone interface. CONCLUSIONS Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. GENERAL SIGNIFICANCE Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.
Journal of Dental Research | 2013
Zohreh Khavandgar; Sharifa Alebrahim; Hazem Eimar; Faleh Tamimi; Marc D. McKee; Monzur Murshed
Sphingomyelin phosphodiesterase 3 (Smpd3) encodes a membrane-bound enzyme that cleaves sphingomyelin to generate several bioactive metabolites. A recessive mutation called fragilitas ossium (fro) in the Smpd3 gene leads to impaired mineralization of bone and tooth extracellular matrix (ECM) in fro/fro mice. In teeth from fro/fro mice at various neonatal ages, radiography and light and electron microscopy showed delayed mantle dentin mineralization and a consequent delay in enamel formation as compared with that in control +/fro mice. These tooth abnormalities progressively improved with time. Immunohistochemistry showed expression of SMPD3 by dentin-forming odontoblasts. SMPD3 deficiency, however, did not affect the differentiation of these cells, as shown by osterix and dentin sialophosphoprotein expression. Using a transgenic mouse rescue model (fro/fro; Col1a1-Smpd3) in which Smpd3 expression is driven by a murine Col1a1 promoter fragment active in osteoblasts and odontoblasts, we demonstrate a complete correction of the tooth mineralization delays. In conclusion, analysis of these data demonstrates that Smpd3 expression in odontoblasts is required for tooth mineralization.
International Scholarly Research Notices | 2013
Ghazaleh Khayat; Derek H. Rosenzweig; Zohreh Khavandgar; Jingjing Li; Monzur Murshed; Thomas M. Quinn
Mechanical stimulation influences stem cell differentiation and may therefore provide improved lineage specification control for clinical applications. Low-frequency oscillatory mechanical stimulation (0.01 Hz) has recently been shown to suppress adipogenic differentiation of mesenchymal stem cells, indicating that the range of effective stimulation frequencies is not limited to those associated with locomotion, circulation, and respiration. We hypothesized that low-frequency mechanical stimulation (0.01 Hz) can also promote osteogenic cell differentiation of myoblastic C2C12 cells in combination with BMP-2. Results indicate that low-frequency mechanical stimulation can significantly enhance osteogenic gene expression, provided that differentiation is initiated by a priming period involving BMP-2 alone. Subsequent application of low-frequency mechanical stimulation appears to act synergistically with continued BMP-2 exposure to promote osteogenic differentiation of C2C12 cells and can even partially compensate for the removal of BMP-2. These effects may be mediated by the ERK and Wnt signalling pathways. Osteogenic induction of C2C12 cells by low-frequency mechanical stimulation is therefore critically dependent upon previous exposure to growth factors, and the timing of superimposed BMP-2 and mechanical stimuli can sensitively influence osteogenesis. These insights may provide a technically simple means for control of stem cell differentiation in cell-based therapies, particularly for the enhancement of differentiation toward desired lineages.
Journal of Nutrition | 2014
Negar Tabatabaei; Celia Rodd; Richard Kremer; Zohreh Khavandgar; Monzur Murshed; Hope A. Weiler
BACKGROUND The effects of vitamin D during pregnancy on maternal and neonatal bone health remain unclear. OBJECTIVE This study was designed to test whether dietary vitamin D dose-dependently affects maternal and neonatal bone health. METHODS Female guinea pigs (n = 45; 4 mo old) were randomly assigned at mating to receive 1 of 5 doses of vitamin D3 (cholecalciferol; 0, 0.25, 0.5, 1, or 2 IU/g diet) throughout pregnancy. Plasma vitamin D metabolites, mineral homeostasis, bone biomarkers, and bone mass were tested in sows throughout pregnancy and in 2-d-old pups. Microarchitecture and histology of excised bone were conducted postpartum. RESULTS By 3 wk of pregnancy, plasma 25-hydroxyvitamin D [25(OH)D] followed a positive dose-response, whereas 1,25-dihydroxyvitamin D [1,25(OH)2D] reached a plateau if vitamin D was ≥0.5 IU/g diet. Weight gain, areal bone mineral density (aBMD), volumetic bone mineral density (vBMD), and bone biomarkers did not differ among maternal groups. A positive dose-response was observed for mean ± SEM pup plasma concentrations of 25(OH)D (10.5 ± 1.50 to 113 ±11.6 nmol/L) and 1,25(OH)2D (123 ± 13.8 to 544 ± 53.3 pmol/L). Pup weight, plasma minerals, and osteocalcin were not different; plasma deoxypyridinoline was lower in the 1- and 0.25-IU/g groups than in all other groups. Pup femur aBMD was higher (9.2-13%; P = 0.04) in the 2-IU/g group than in all other groups except for the 0-IU/g group. Tibia and femur vBMD of pups responded to maternal diet in a U-shaped pattern. The femoral growth plate was 7.9% wider in the 0-IU/g group than in the 1-IU/g group. CONCLUSIONS Maternal vitamin D supplementation dose-dependently altered pup long bone architecture and mineral density in a manner similar to vitamin D deficient rickets whereas maternal bone was stable. These data reinforce that inadequate maternal vitamin D intake may compromise neonatal bone health and that exceeding recommendations is not advantageous.
Genesis | 2014
Sharifa Alebrahim; Zohreh Khavandgar; Juliana Marulanda; Monzur Murshed
Sphingomyelin phosphodiesterase 3 (SMPD3) is a pleiotropic lipid metabolizing enzyme involved in multiple physiological processes. A deletion mutation in the murine Smpd3 gene called fragilitas ossium (fro) leads to severe skeletal abnormalities in the developing fro/fro embryos. Although fro/fro mice can be useful to study many different aspects of SMPD3 functions, their perinatal lethality makes it difficult to generate a sufficient number of mice for controlled studies. In fact, on the C57BL/6 genetic background, none of the fro/fro mice survive beyond the perinatal stage. In this study, we used the “Tet‐On” inducible gene expression system to express Smpd3 transiently in fro/fro;ROSA‐rtTA;TRE‐Smpd3 embryos on the C57BL/6 background. This induced Smpd3 expression corrected all the skeletal abnormalities in these embryos and prevented their early death. However, induction of Smpd3 expression in the adolescent fro/fro;ROSA‐rtTA;TRE‐Smpd3 mice was not sufficient to correct the defects in trabecular bone mineralization and the impaired growth of the long bones. This novel mouse model will be a useful tool to study SMPD3 biology in vivo. genesis 52:408–416, 2014.
Cellular and Molecular Life Sciences | 2015
Zohreh Khavandgar; Monzur Murshed