Zongbo Shi
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zongbo Shi.
Atmospheric Environment | 2003
Zongbo Shi; Longyi Shao; Timothy Peter Jones; Andrew Gordon Whittaker; Senlin Lu; Kelly Ann Berube; Taoe He; Roy J. Richards
Abstract Collection campaigns for PM10 and PM2.5 have been conducted in a northwestern Beijing urban area in monthly periods over 2001, with 7 days collection per month. The samples were also collected simultaneously in a satellite city, Nankou, and a clean air area near the Ming Tombs Reservoir (MTR) over the domestic heating (March) and non-heating (July/August) periods in 2001 (both for one week). To assist the analysis, three types of ‘source’ particulate matter (PM) samples were taken. These consisted of coal combustion ash collected on top of a coke oven; dust storm particles collected during dust storm periods; and roadside PM10 collected on a major road in Beijing. Monitoring results reveal that, in the urban area, particle mass levels were higher in winter than in other seasons. The 1-week/month average PM10 mass levels were over 250 μg m −3 in winter. The particle mass levels in the satellite city were slightly lower than those at the urban site, and the lowest mass levels occurred at the MTR site. The morphology and chemical composition of individual airborne particles were determined by scanning electron microscopy, and image analysis was employed to study the number-size distributions. The number-size distributions of mineral particles showed that those in the Asia-Dust storm (ADS) collections are mostly coarser than 1 μm , while mineral particles of the non-ADS collections are predominately finer than 1 μm . The particles in the respirable ( μm ) fraction accounted for 99% of the total particles in airborne PM samples. Soot aggregates were generally the most abundant components in airborne PM samples at all three sites. The fly ash (spherical) particles at the MTR site were significantly enriched over the heating period, indicating a domestic coal-burning source.
Science of The Total Environment | 2014
Adewale M. Taiwo; David C. S. Beddows; Zongbo Shi; Roy M. Harrison
Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot (PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed for water-soluble anions (Cl(-), NO₃(-) and SO₄(2-)) and cations (Na(+), NH4(+), K(+), Mg(2+) and Ca(2+)) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass distribution showed a predominance of fine particle (PM₂.₅) mass at EROS whereas the PT samples were dominated by the coarse fraction (PM₂.₅₋₁₀). SO₄(2-), Cl(-), NH4(+), Na(+), NO₃(-), and Ca(2+) were the predominant ionic species at both sites while Al and Fe were the metals with highest concentrations at both sites. Mean concentrations of Cl(-), Na(+), K(+), Ca(2+), Mg(2+), Cr, Mn, Fe and Zn were higher at PT than EROS due to industrial and marine influences. The contribution of regional pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by secondary aerosol and traffic-related particles while PT was heavily influenced by industrial activities and marine aerosol. Profound influences of wind direction are seen in the 72-hour data, especially in relation to the PT local sources. Measurements of particle number in 14 separate size bins plotted as a function of wind direction and speed are highly indicative of contributing sources, with local traffic dominant below 0.5 μm, steelworks emissions from 0.5 to 15 μm, and marine aerosol above 15 μm.
Science of The Total Environment | 2014
Adewale M. Taiwo; David C. S. Beddows; G. Calzolai; Roy M. Harrison; F. Lucarelli; S. Nava; Zongbo Shi; G. Valli; R. Vecchi
In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions.
Science of The Total Environment | 2013
Weijun Li; Zongbo Shi; Chao Yan; Lingxiao Yang; Can Dong; Wenxing Wang
Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM(2.5) and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM(2.5) concentration reached 183 μg m(-3) during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO(2) to sulfate.
Journal of Geophysical Research | 2014
Weijun Li; Longyi Shao; Zongbo Shi; Jianmin Chen; Lingxiao Yang; Qi Yuan; Chao Yan; Xiaoye Zhang; Yaqiang Wang; Junying Sun; Yangmei Zhang; Xiaojing Shen; Zifa Wang; Wenxing Wang
Pollutants during haze and Asian dust storms are transported out of the Asian continent, affecting the regional climate and the hydrological and biogeochemical cycles. Understanding the physicochemical properties of aerosol particles is essential to quantify their impacts. In order to determine physicochemical properties of aerosols before leaving the Asian continent, we carried out a field campaign from 14 April to 2 May 2011 at a background site in the path of Asian dust and haze outflows. We measured concentrations of gaseous pollutants (SO2, NO2, NO, O3, and CO), black carbon (BC), and particle number in situ and collected airborne particles for microscopic analysis. Pollutant concentrations (BC, 4 µg m−3; CO, 808 ppb; SO2, 24 ppb; NO2, 37 ppb) were highest during haze periods, except for PM2.5 mass, which was highest (162 µg m−3) during a dust storm. Seventy-one percent of haze particles were coated with organic films and 32% were internal mixtures of sulfates and refractory particles (e.g., soot, metal/fly ash, and mineral). Seventy-nine percent of haze particles have deliquescence relative humidity at 68–70%. During a dust storm, soot particles were observed among dust particles. Most dust particles were hydrophobic, and no Ca(NO3)2 was observed in dust particles collected during the dust storms, but up to 32% of dust particles were found to be coated with Ca(NO3)2 after the main dust storm moved out of the sampling area. These results indicated that both natural and anthropogenic aerosol particles in Asian outflow can undergo significant physicochemical processes before leaving the Asian continent.
Journal of Environmental Sciences-china | 2007
Zongbo Shi; Ke-bin He; Xue-chun Yu; Zhi-liang Yao; Fumo Yang; Yong-liang Ma; Rui Ma; Yingtao Jia; Jie Zhang
Number concentration and distribution of airborne particles in the size range 5.6 to 560 nm diameter were measured in Beijing for a 15-d period in winter 2005. Daily average number concentrations of nucleation mode (5.6-20 nm), Aitken mode (20-100 nm), and accumulation mode (100-560 nm) particles, and total particles were 17500, 32000, 4000, and 53500 cm(-3), respectively. Average particle size distribution was monomodal with a mode diameter of about 40 nm at night and bimodal with mode diameters of about 10 and about 40 nm during the daytime. New particle formation events, which were connected to diurnal variation of nucleation mode particles, were observed in more than half of the observation days. The events often started around 10:00-11:00 Chinese Standard Time (CST) and ended up after 3-4 h. Concentrations of Aitken and accumulation mode particles increased from midnight and reached their maxima at about 10:00 CST, and then decreased and became the lowest in the afternoon. Analysis of diurnal cycles in traffic volume and meteorological parameters revealed that the accumulation of the particles in Aitken and accumulation modes in the morning was influenced by formation of an inversion and increase in vehicle emission, and dispersion of such particles in the afternoon was associated with more effective vertical mixing and higher wind speed.
Science Advances | 2017
Weijun Li; Liang Xu; Xiaohuan Liu; Jianchao Zhang; Yangting Lin; Xiaohong Yao; Huiwang Gao; Daizhou Zhang; Jianmin Chen; Wenxing Wang; Roy M. Harrison; Xiaoye Zhang; Longyi Shao; Pingqing Fu; Athanasios Nenes; Zongbo Shi
Acidic air pollutants dissolve iron in aerosols and fertilize the ocean. It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a “hotspot” of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the “smoking gun” for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere.
Journal of Geophysical Research | 2016
Weijun Li; Jiaxing Sun; Liang Xu; Zongbo Shi; Nicole Riemer; Yele Sun; Pingqing Fu; Jianchao Zhang; Yangting Lin; Xinfeng Wang; Longyi Shao; Jianmin Chen; Xiaoye Zhang; Zifa Wang; Wenxing Wang
This study investigated the particle size- and age-dependent mixing structure of individual particles in clean and polluted air. Aerosols were classified into eight components: sea salt, mineral dust, fly ash, metal, soot, sulfates, nitrates, and organic matter (OM). Based on our aerosol classification, a particle that consists of two or more aerosol components can be defined as an internally mixed particle. Otherwise, it is considered to be an externally mixed particle. Within the internally-mixed particle class, we identified four heterogeneous mixing structures: core-shell, dumbbell, OM-coating, and dispersed-OM, as well as one homogeneous-like mixing structure. Homogeneous-like mixing mainly occurred in fine particles (<1 µm), while the frequency of heterogeneously mixed particles increased with particle size. Our study demonstrated that particle mixing structures depend on particle size and location, and evolve with time. OM-coating and core-shell structures are important indicators for particle aging in air as long as they are distant from specific emission sources. Long-range transported particles tended to have core-shell and OM-coating structures. We found that secondary aerosol components (e.g., sulfates, nitrates, and organics) determined particle mixing structures, because their phases change following particle hydration and dehydration under different relative humidities. Once externally mixed particles are transformed into internally mixed particles, they cannot revert to their former state, except when semi-volatile aerosol components are involved. Categorizing mixing structures of individual particles is essential for studying their optical and hygroscopic properties and for tracing the development of their physical or chemical properties over time.
Atmospheric Chemistry and Physics | 2011
Zongbo Shi; Matthew T. Woodhouse; Kenneth S. Carslaw; Michael D. Krom; G. W. Mann; Alex R. Baker; Ivan P. Savov; Gary R. Fones; Barbara J. Brooks; Nicholas Drake; Timothy D. Jickells; Liane G. Benning
Observations show that the fractional solubility of Fe (FS-Fe, percentage of dissolved to total Fe) in dust aerosol increases considerably from 0.1 % in regions of high dust mass concentration to 80 % in remote regions where concentrations are low. Here, we combined laboratory geochemical measurements with global aerosol model simulations to test the hypothesis that the increase in FS-Fe is due to physical size sorting during transport. We determined the FS-Fe and fractional solubility of Al (FS-Al) in size-fractionated dust generated from two representative soil samples collected from known Saharan dust source regions using a customized dust re-suspension and collection system. The results show that the FS-Fe is size-dependent and ranges from 0.1–0.3 % in the coarse size fractions ( >1 μm) to ∼0.2–0.8 % in the fine size fractions ( <1 μm). The FSAl shows a similar size distribution to that of the FS-Fe. The size-resolved FS-Fe data were then combined with simulated dust mass concentration and size distribution data from a global aerosol model, GLOMAP, to calculate the FS-Fe of dust aerosol over the tropical and subtropical North Atlantic Ocean. We find that the calculated FS-Fe in the dust aerosol increases systematically from ∼0.1 % at high dust mass concentrations (e.g., >100 μg m−3) to ∼0.2 % at low concentrations (<100 μg m−3) due to physical size sorting (i.e., particle gravitational settling). These values are one to two orders of magnitude smaller than those observed on cruises across the tropical and sub-tropical North Atlantic Ocean under an important pathway of Saharan dust plumes for simiCorrespondence to: Z. B. Shi ([email protected]) lar dust mass concentrations. Even when the FS-Fe of submicrometer size fractions (0.18–0.32 μm, 0.32–0.56 μm, and 0.56–1.0 μm) in the model is increased by a factor of 10 over the measured values, the calculated FS-Fe of the dust is still more than an order of magnitude lower than that measured in the field. Therefore, the physical sorting of dust particles alone is unlikely to be an important factor in the observed inverse relationship between the FS-Fe and FS-Al and the atmospheric mineral dust mass concentrations. The results suggest that processes such as chemical reactions and/or mixing with combustion particles are the main mechanisms to cause the increased FS-Fe in long-range transported dust aerosols.
Environmental Science & Technology | 2015
Zongbo Shi; Michael D. Krom; Steeve Bonneville; Liane G. Benning
Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.