Zongliu Hou
Kunming Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zongliu Hou.
BMC Medical Genomics | 2014
Wenju Wang; Mingyao Meng; Yayong Zhang; Chuanyu Wei; Yanhua Xie; Lihong Jiang; Chunhui Wang; Fang Yang; Weiwei Tang; Xingfang Jin; Dai Chen; Jie Zong; Zongliu Hou; Ru-Hong Li
BackgroundCytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet.MethodsCIKIL-2 and CIKIL-15 were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation.ResultsThe results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIKIL-2. However, CIKIL-2 has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIKIL-2 and CIKIL-15. A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIKIL-15 and 199 up-regulated genes in CIKIL-2. Among DEGs in CIKIL-15, Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIKIL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIKIL-15, while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIKIL-2. Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIKIL-2 through type I interferon signaling.ConclusionsThrough our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIKIL-15 and CIKIL-2. Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.
Tumor Biology | 2014
Chuanyu Wei; Wenju Wang; Wei Pang; Mingyao Meng; Lihong Jiang; Sha Xue; Yanhua Xie; Ru-Hong Li; Zongliu Hou
Generation of cytokine-induced killer (CIK) cells is an emerging approach in adoptive donor lymphocyte infusion for patients with a wide range of tumors. However, our previous in vitro studies have shown that the killing efficacy of CIK cells against lung cancer was lower than other tumor cells, while the underlying mechanisms are not clear. We explored the feasibility to improve CIK cells mediated cytotoxicity against lung cancer. Interleukin (IL)-15 is a pleiotropic cytokine that stimulates cytolytic activity and cytokine secretion of NK cells, which may enhance the cytotoxic activity of CIK cells. In this study, we intended to stimulate the CIK cells by IL-2 in combination with IL-15 in cell expansion to achieve enhanced cytotoxicity against lung cancer cells. The different phenotypes of IL-2 or combination of IL-2 and IL-15 stimulated cytokine-induced killer cells were determined, and the improved cytotoxicity of IL-2 and IL-15 induced CIK cells against lung adenocarcinoma were evaluated both in vitro and in vivo. CIK cells stimulated with both IL-2 and IL-15 has shown greater proliferative potential than CIK cells treated with IL-2 alone. IL-15 induction also has driven the expansion of CD3+CD56+ subset and significantly enhanced cytotoxicity against tumor cells. Further analysis has demonstrated that CIKIL-2&IL-15 injected mice models have shown significant tumor regression and lower expression level of CyclinD1 in tumor tissue. This study has provided preclinical evidences that CIKIL-2&IL-15 with enhanced cytotoxicity may offer alternative treatment option for patients with lung cancer.
Meta Gene | 2013
Wenju Wang; Zongliu Hou; Chunhui Wang; Chuanyu Wei; Yaxiong Li; Lihong Jiang
Background Inconsistent results were reported in recent literature regarding the association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and the susceptibility of congenital heart disease (CHD). In this study, we performed a meta-analysis to investigate the associations by employing multiple analytical methods. Methods Literature search was performed and published articles were obtained from PubMed, Embase and CNKI databases based on the exclusion and inclusion criteria. Data were extracted from eligible studies and the crude odds ratios and their corresponding 95% confidence intervals (CIs) were calculated using random or fix effects model to evaluate the associations between the MTHFR C677T/A1298C polymorphisms and CHD development. Subgroup based analysis was performed by Hardy–Weinberg equilibrium, ethnicity, types of CHD, source of control and sample size. Results Twenty-four eligible studies were included in this meta-analysis. Significant association was found between fetal MTHFR C677T polymorphism and CHD development in all genetic models. The pooled ORs and 95% CIs in all genetic models indicated that MTHFR C677T polymorphism was significantly associated with CHD in Asian, but not Caucasian in subgroup analysis. The maternal MTHFR C677T polymorphism was not associated with CHD except for recessive model. Moreover, neither maternal nor fetal MTHFR A1298C polymorphism was associated with CHD. Conclusion The fetal MTHFR C677T polymorphism may increase the susceptibility to CHD. Fetal MTHFR C677T polymorphism was more likely to affect Asian fetus than Caucasian. The MTHFR A1298C polymorphism may not be a risk of congenital heart disease.
Tumor Biology | 2013
Chunhui Wang; Wenju Wang; Jiansong Wang; Hui Zhan; Lihong Jiang; Ruping Yan; Zongliu Hou; Huirong Zhu; Lirui Yu; Yunqiang Shi; Mingxia Ding; Changxing Ke
Bladder cancer (BC) is one of the most common human malignancies that account for major death in the world. Apoptin that is derived from chicken anemia virus (CAV) has displayed tumor-specific cytotoxic activity in a variety of human carcinomas. However, the magical function of apoptin in bladder carcinoma cell lines has not been identified yet. In our study, we delivered apoptin into bladder-originating T24, EJ, and HCV29 cell lines by adenovirus system. The selective cytotoxic effect of apoptin was determined by cell viability assay, active caspase-3 measurement, and annexin V/PI double staining. Importantly, we have examined the differential expression patterns of tumor-associated genes including Ki67, C-erbB-2, Rb, and nm23 by flow cytometry and western blot in vitro. In an animal study, apoptin was infused into animal models by AAV system, and immunohistochemistry and quantitative real-time PCR (qRT-PCR) were employed to validate results in vivo. The results indicated that apoptin could selectively induce apoptosis in bladder tumorigenic cells coupled with tumor-specific nucleus accumulation in vitro. Interestingly, apoptin could downregulate expression levels of Ki67 and C-erbB-2 and upregulate the expression of Rb both in vitro and in vivo. Moreover, the animal models treated with AAV-apoptin have shown smaller tumor volumes and displayed better prognosis than controls. In conclusion, apoptin could selectively induce apoptosis in bladder tumor cells through altering expression profiles of tumor-associated genes.
Gene | 2016
Wenju Wang; Zhaoyi Niu; Yi Wang; Yaxiong Li; Honglin Zou; Li Yang; Mingyao Meng; Chuanyu Wei; Qinrui Li; Le Duan; Yanhua Xie; Yayong Zhang; Yu Cao; Shen Han; Zongliu Hou; Lihong Jiang
Congenital heart disease (CHD) is one of most common birth defects, causing fetal loss and death in newborn all over the world. Atrial and ventricular septal defects were the most common CHD subtypes in most districts. During the past decades, several genes were identified to control atrial septum formation, and mutations of these genes can cause cardiac septation defects. However, the pathogenic mechanism of ASD on transcriptional levels has not been well elucidated yet. Herein, we performed comparative transcriptome analysis between normal and atrial septal defect (ASD) patients by Illumina RNA sequencing (RNA-seq). Advanced bioinformatic analyses were employed to identify dysregulated genes in ASD. The results indicated that cardiac specific transcriptional factors (GATA4 and NKX2-5), extracellular signal molecules (VEGFA and BMP10) and cardiac sarcomeric proteins (MYL2, MYL3, MYH7, TNNT1 and TNNT3) were downregulated in ASD which may affect heart atrial septum formation, cardiomyocyte proliferation and cardiac muscle development. Importantly, cell cycle was dominant pathway among downregulated genes, and decreased expression of the proteins included in cell cycle may disturb cardiomyocyte growth and differentiation during atrial septum formation. Our study provided evidences of understanding pathogenic mechanism of ASD and resource for validation of CHD genomic studies.
Gene | 2013
Yunhong Wei; Wenju Wang; Yan He; Lihong Jiang; Zongliu Hou; Xuezhen Gao; Chuanyu Wei; Mei Cen; Lifang Yang; Anjun Tan; Wenhui Yang; Yipeng Wang; Xingfang Jin
Cerebral infarction has become one of the leading diseases and a major mortality factor around the world. Atherosclerosis is recognized as one of the important causes of ischemic stroke. Recently, accumulating evidences have indicated that the anti-inflammatory and anti-apoptotic functions of the HSP70 family play an important role in cerebral ischemia. However, the association between HSP70 SNPs and ischemic stroke was also not well established. We chose 101 cases of cerebral ischemia and 100 healthy people from the Chinese Han population as our study subjects, and PCR-RFLP was employed to analyze HSP70 polymorphisms: HSP70-1+190G/C, HSP70-2+1267A/G and HSP70-hom+2437T/C. There were no significant differences in +1267A/G allele or genotype frequencies between patients with stroke and healthy controls. However, genotypes of +190CG and +2437TT were differentially distributed between the patients and controls. A significant difference of T allele distribution in the HSP70-hom+2437T/C site was observed. Logistic regression analysis indicated that genotypes of +190CG, +2437TT and T allele in HSP70-hom were risk factors of ischemic stroke. Moreover, the study has formulated that the interactions between hypertension and +190CG or +2437TT may increase the risks of ischemic stroke. The results from this study have suggested a clinical indicator for assessing the possibilities of cerebral stroke, and supply basis to clinicians to give precaution to people who are at risk of stroke.
Experimental Biology and Medicine | 2012
Mingyao Meng; Wei Pang; Lihong Jiang; Yunhong Liu; Chuanyu Wei; Yanhua Xie; Hai-Dong Yu; Zongliu Hou
Umbilical cord mesenchymal stem cells (UC-MSCs) have several advantages for clinical therapy: the material is easily obtainable, the donation procedure is painless and there is low risk of viral contamination. UC-MSCs play important roles in tissue regeneration, tissue damage repair, autoimmune disease and graft-versus-host disease. In this study, we investigated the normal mRNA expression profile of UC-MSCs, and analyzed the candidate proteins responsible for the signaling pathway that may affect the differentiation characteristics of UC-MSCs. UC-MSCs were isolated by mincing UC samples into fragments and placing them in growth medium in a six-well plate. The immunophenotype characteristics and multilineage differentiation potential of the UC-MSCs were measured by flow cytometry and immunohistochemical assays. In addition, the pathway-focused gene expression profile of UC-MSCs was compared with those of normal or tumorous cells by realtime quantitative polymerase chain reaction. We successfully isolated and cultured UC-MSCs and analyzed the appropriate surface markers and their capacity for osteogenic, adipogenic and neural differentiation. In total, 168 genes focusing on signal pathways were examined. We found that the expression levels of some genes were much higher or lower than those of control cells, either normal or tumorous. UC-MSCs exhibit a unique mRNA expression profile of pathway-focused genes, especially some stemness genes, which warrants further investigation.
Tumor Biology | 2014
Dong Wei; Xiaowen Zhang; Hao Zou; Lin Wang; Bimang Fu; Xuesong Wu; Zhiling Luo; Xiao Li; Jiayun Ge; Yuehua Li; Hong Zhu; Kun Wang; Tao Wang; Pei Yang; Zongliu Hou; Wenju Wang
Gallbladder cancer (GBC) is one leading cause of cancer-related death worldwide. WW domain-containing oxidoreductase (WWOX) is a tumor suppressor gene which can suppress proliferation of a variety of tumors. However, little was known about the relationships between WWOX and gallbladder cancer. In the current study, we intended to investigate the tumor suppressive role of WWOX in gallbladder malignant cells both in vitro and in vivo, and explore the potential mechanism of tumor toxic function of WWOX. Our results have shown that WWOX triggerred apoptosis in GBC cells and increased the expression of P73 and PUMA in cytoplasm. We also have found that Bax has been upregulated after overexpression of WWOX, whereas, Bcl-2 was downregulated by WWOX. To further validate the results in vivo, we evaluated the tumor suppressive role of WWOX in mouse model of gallbladder cancer. The results have shown that the proliferation of the tumor was inhibited after delivery of WWOX, and the expressions of P73 and PUMA were upregulated in target tissues. The mice models administrated with WWOX have shown better prognosis than mice in negative control groups. The results from our study indicated that WWOX could be used as a therapeutic agent in the gene therapy of gallbladder cancer.
Journal of Biomedical Materials Research Part B | 2018
Lei Pu; Jian Wu; Xingna Pan; Zongliu Hou; Jing Zhang; Wenmin Chen; Zhuhui Na; Mingyao Meng; Haiyan Ni; Liqiong Wang; Yaxiong Li; Lihong Jiang
Although detergent-based decellularization protocols have been widely used to obtain a natural extracellular matrix (ECM) scaffold in tissue engineering, some key challenges still exist. To achieve an optimum natural decellularized scaffold for the construction of tissue-engineered small-diameter blood vessels (TEBV), porcine carotid arteries (PCAs) were decellularized by combining sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC) and Triton X-100 (Triton) in different concentrations. Tissue samples were processed and their histological, biochemical and biomechanical characteristics were investigated. Results showed that only two methods 0.5% (SDS + SDC) and 1% (SDS + SDC) could completely remove of the cellular contents and preserve the native ECM architecture. Furthermore, 1% (SDS + SDC) based methods acquire preferable porosity and suitable mechanical strength. Residual Triton in the ECM scaffold holds intensive cytotoxity. In conclusion, 1%(SDS + SDC) based method can obtain a superior PCAs scaffold for the construction of TEBV.
Stem Cell Research & Therapy | 2017
Lei Pu; Mingyao Meng; Jian Wu; Jing Zhang; Zongliu Hou; Hui Gao; Hui Xu; Boyu Liu; Weiwei Tang; Lihong Jiang; Yaxiong Li
BackgroundThe success of developing cardiovascular tissue engineering (CTE) grafts greatly needs a readily available cell substitute for endothelial and interstitial cells. Perinatal annexes have been proposed as a valuable source of mesenchymal stem cells (MSCs) for tissue engineering and regenerative medicine. The objective of the present study is to evaluate the potential of human Wharton’s jelly MSCs (WJ-MSCs) and amniotic membrane MSCs (AM-MSCs) as a seeding cell in CTE and cardiovascular regenerative medicine.MethodsWJ-MSCs/AM-MSCs were isolated and characterized in vitro according to their morphology, proliferation, self-renewal, phenotype, and multipotency. More importantly, the characteristics of hemocompatibility, extracellular matrix deposition, and gene expression and viability of both MSCs were investigated.ResultsFibroblast-like human WJ-MSCs and AM-MSCs were successfully isolated and positively expressed the characteristic markers CD73, CD90, and CD105 but were negative for CD34, CD45, and HLA-DR. Both MSCs shared trilineage differentiation toward the adipogenic, osteogenic, and chondrogenic lineages. The proliferative and self-renewal capacity of WJ-MSCs was significantly higher than that of AM-MSCs (P < 0.001). WJ-MSCs provided comparable properties of antiplatelet adhesion and did not activate the coagulation cascade to endothelial cells. However, aggregated platelets were visualized on the surface of AM-MSCs-derived cell sheets and the intrinsic pathway was activated. Furthermore, WJ-MSCs have superior properties of collagen deposition and higher viability than AM-MSCs during cell sheet formation.ConclusionsThis study highlights that WJ-MSCs could act as a functional substitute of endothelial and interstitial cells, which could serve as an appealing and practical single-cell source for CTE and regenerative therapy.