Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zongyi Li is active.

Publication


Featured researches published by Zongyi Li.


Journal of Materials Chemistry B | 2016

Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides

Meiwen Cao; Ningning Wang; Lei Wang; Yu Zhang; Yucan Chen; Zilong Xie; Zongyi Li; Elias Pambou; Ruiheng Li; Cuixia Chen; Fang Pan; Hai Xu; Jeffery Penny; John R. P. Webster; Jian R. Lu

Different amphiphilic peptides were used to mediate the direct exfoliation of graphite into few-layered graphene flakes in aqueous solutions. Charge was found to be an important parameter in determining their graphite exfoliating efficiency. The anionic molecules were more favorable than the cationic ones leading to a higher efficiency. The gemini-type peptide IleIleIleCys-CysIleIleIle (I3C-CI3) exhibited the highest efficiency, which might be attributed to its specific physicochemical properties and interactions with graphene sheets. I3C-CI3 adsorbed onto the graphene surface as either monomers or self-assembled nanoaggregates. These adsorbed species increased both electrostatic and steric repulsions between the graphene/I3C-CI3 composites. More interestingly, the graphene/I3C-CI3 composites showed a reversible pH-dependent dispersion/aggregation. This behavior resulted from the pH-sensitive protonation of the peptide molecules and was rarely found in the graphene dispersions exfoliated by traditional surfactants. Moreover, the graphene/I3C-CI3 dispersion was used to fabricate free-standing macroscopic composite films that contained different nanostructures. The study expands the library of available agents for direct graphite exfoliation to produce graphene sheets. Employing peptide molecules as graphene exfoliating and stabilizing agents avoids the use of toxic reagents, which may allow fabrication of functional composite materials for biocompatible applications.


ACS Applied Materials & Interfaces | 2017

Fabrication of Patterned Thermoresponsive Microgel Strips on Cell-Adherent Background and Their Application for Cell Sheet Recovery

Yongqing Xia; Ying Tang; Han Wu; Jing Zhang; Zongyi Li; Fang Pan; Shengjie Wang; Xiaojuan Wang; Hai Xu; Jian R. Lu

Interfaces between materials and cells play a critical role in cell biomedical applications. Here, a simple, robust, and cost-effective method is developed to fabricate patterned thermoresponsive poly(N-isopropylacrylamide-co-styrene) microgel strips on a polyethyleneimine-precoated, non-thermoresponsive cell-adherent glass coverslip. The aim is to investigate whether cell sheets could be harvested from these cell-adherent surfaces patterned with thermoresponsive strips comprised of the microgels. We hypothesize that if the cell-to-cell interaction is strong enough to retain the whole cell sheet from disintegration, the cell segments growing on the thermoresponsive strips may drag the cell segments growing on the cell-adherent gaps to detach, ending with a whole freestanding and transferable cell sheet. Critical value concerning the width of the thermoresponsive strip and its ratio to the non-thermoresponsive gap may exist for cell sheet recovery from this type of surface pattern. To obtain this critical value, a series of strip patterns with various widths of thermoresponsive strip and non-thermoresponsive gap were prepared using negative microcontact printing technology, with COS7 fibroblast cells being used to test the growth and detachment. The results unraveled that COS7 cells preferentially attached and proliferated on the cell-adherent, non-thermoresponsive gaps to form patterned cell layers and that they subsequently proliferated to cover the microgel strips to form a confluent cell layer. Intact COS7 cell sheets could be recovered when the width of the thermoresponsive strip is no smaller than that of the non-thermoresponsive gap. Other cells such as HeLa, NIH3T3, 293E, and L929 could grow similarly; that is, they showed initial preference to the non-thermoresponsive gaps and then migrated to cover the entire patterned surface. However, it was difficult to detach them as cell sheets due to the weak interactions within the cell layers formed. In contrast, when COS7 and HeLa cells were cultured successively, they formed the cocultured cell layer that could be detached together. These freestanding patterned cell sheets could lead to the development of more elaborate tumor models for drug targeting and interrogation.


Colloids and Surfaces B: Biointerfaces | 2016

Tuning self-assembled morphology of the Aβ(16–22) peptide by substitution of phenylalanine residues

Jiqian Wang; Kai Tao; Peng Zhou; Elias Pambou; Zongyi Li; Hai Xu; Sarah E. Rogers; Stephen M. King; Jian R. Lu

The effects of the two phenylalanine (Phe) residues in the blocked Aβ(16-22) peptide on its self-assembly have been investigated by replacing both of them with two cyclohexylalanines (Chas) or two phenylglycines (Phgs). TEM and SANS studies revealed that the flat and wide nanoribbons of Aβ(16-22) were transformed into thin nanotubes when replaced with Chas, and thinner and twisted nanofibrils when replaced with Phgs. The red-shifting degree of characteristic CD peaks suggested an increased twisting in the self-assembly of the derivative peptides, especially in the case of Ac-KLV(Phg)(Phg)AE-NH2. Furthermore, molecular dynamics (MD) simulations also indicated the increasing trend in twisting when Chas or Phgs were substituted for Phes. These results demonstrated that the hydrophobic interactions and spatial conformation between Cha residues were sufficient to cause lateral association of β-sheets to twisted/helical nanoribbons, which finally developed into nanotubes, while for Phg residue, the loss of the rotational freedom of the aromatic ring induced much stronger steric hindrance for the lateral stacking of Ac-KLV(Phg)(Phg)AE-NH2 β-sheets, eventually leading to the nanofibril formation. This study thus demonstrates that both the aromatic structure and the steric conformation of Phe residues are crucial in Aβ(16-22) self-assembly, especially in the significant lateral association of β-sheets.


Chemistry: A European Journal | 2016

Tuning One-Dimensional Nanostructures of Bola-Like Peptide Amphiphiles by Varying the Hydrophilic Amino Acids.

Yurong Zhao; Li Deng; Wei Yang; Dong Wang; Elias Pambou; Zhiming Lu; Zongyi Li; Jiqian Wang; Stephen M. King; Sarah E. Rogers; Hai Xu; Jian R. Lu

By combining experimental measurements and computer simulations, we here show that for the bola-like peptide amphiphiles XI4 X, where X=K, R, and H, the hydrophilic amino acid substitutions have little effect on the β-sheet hydrogen-bonding between peptide backbones. Whereas all of the peptides self-assemble into one dimensional (1D) nanostructures with completely different morphologies, that is, nanotubes and helical nanoribbons for KI4 K, flat and multilayered nanoribbons for HI4 H, and twisted and bilayered nanoribbons for RI4 R. These different 1D morphologies can be explained by the distinct stacking degrees and modes of the three peptide β-sheets along the x-direction (width) and the z-direction (height), which microscopically originate from the hydrogen-bonding ability of the sheets to solvent molecules and the pairing of hydrophilic amino acid side chains between β-sheet monolayers through stacking interactions and hydrogen bonding. These different 1D nanostructures have distinct surface chemistry and functions, with great potential in various applications exploiting the respective properties of these hydrophilic amino acids.


ACS Applied Materials & Interfaces | 2018

Interfacial Adsorption of Monoclonal Antibody COE-3 at the Solid/Water Interface

Fang Pan; Zongyi Li; Thomas Leyshon; Dominic Rouse; Ruiheng Li; Charles Smith; Mario Campana; John R. P. Webster; Steven M. Bishop; Rojaramani Narwal; Christopher F. van der Walle; Jim Warwicker; Jian R. Lu

Spectroscopic ellipsometry (SE) and neutron reflection (NR) data for the adsorption of a monoclonal antibody (mAb, termed COE-3, pI 8.44) at the bare SiO2/water interface are compared here to the simulations based on Derjaguin-Landau-Verwey-Overbeek theory. COE-3 adsorption was characterized by an initial rapid increase in the surface-adsorbed amount (Γ) followed by a plateau. Only the initial rate of the increase in Γ was strongly correlated with the bulk concentration (0.002-0.2 mg/mL), with Γ at the plateau being about 2.2 mg/m2 (pH 5.5). Simulations captured COE-3 adsorption at equilibrium most accurately, the point at which the outgoing flux of molecules within the adsorbed plane matched the adsorption flux. Increasing the buffer pH from 5.5 to 9 increased Γ at equilibrium to ∼3 mg/m2 (0.02 mg/mL COE-3), revealing a dominant role for lateral repulsion between adsorbed mAb molecules. In contrast, increasing the buffer ionic strength (pH 6) reduced Γ, which was captured by simulations accounting for electrostatic screening by ions, in addition to mAb/SiO2 attractive forces and lateral repulsion. NR data at the same bulk concentrations corroborated the SE data, albeit with slightly higher Γ due to longer adsorption times for data acquisition; for example, at pH 9, Γ was 3.6 mg/m2 (0.02 mg/mL COE-3), equivalent to a relatively high volume fraction of 0.5. An adsorbed monolayer with a thickness of 50-52 Å was consistently determined by NR, corresponding to the short axial lengths of fragment antigen-binding and fragment crystallization and implying minimal structural perturbation. Thus, the simulations enabled a mechanistic interpretation of the experimental data of mAb adsorption at the SiO2/water interface.


Journal of the Royal Society Interface | 2016

Structural features of reconstituted wheat wax films

Elias Pambou; Zongyi Li; Mario Campana; Arwel V. Hughes; Luke A. Clifton; Philipp Gutfreund; Jill Foundling; Gordon Alastair Bell; Jian R. Lu

Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid–liquid and solid–air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops.


Langmuir | 2018

Structural Features of Reconstituted Cuticular Wax Films upon Interaction with Nonionic Surfactant C12E6

Elias Pambou; Xuzhi Hu; Zongyi Li; Mario Campana; Arwel V. Hughes; Peixun Li; John R. P. Webster; Gordon Alastair Bell; Jian R. Lu

The interaction of nonionic surfactant hexaethylene glycol monododecyl ether (C12E6) with a reconstituted cuticular wheat wax film has been investigated by spectroscopic ellipsometry and neutron reflection (NR) to help understand the role of the leaf wax barrier during pesticide uptake, focusing on the mimicry of the actions adjuvants impose on the physical integrity and transport of the cuticular wax films against surfactant concentration. As the C12E6 concentration was increased up to the critical micelle concentration (CMC = 0.067 mM), an increasing amount of surfactant mass was deposited onto the wax film. Alongside surface adsorption, C12E6 was also observed to penetrate the wax film, which is evident from the NR measurements using fully protonated and chain-deuterated surfactants. Furthermore, surfactant action upon the model wax film was found to be physically reversible below the CMC, as water rinsing could readily remove the adsorbed surfactant, leaving the wax film in its original state. Above the CMC, the detergency action of the surfactant became dominant, and a significant proportion of the wax film was removed, causing structural damage. The results thus reveal that both water and C12E6 could easily penetrate the wax film throughout the concentration range measured, indicating a clear pathway for the transport of active ingredients while the removal of the wax components above the CMC must have enhanced the transport process. As the partial removal of the wax film could also expose the underlying cutaneous substrate to the environment and undermine the plants health, this study has a broad implication to the roles of surfactants in crop care.


Langmuir | 2018

Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy

Ruiheng Li; Zongyi Li; Elias Pambou; Philipp Gutfreund; Thomas A. Waigh; John R. P. Webster; Jian R. Lu

Chemical vapor deposition (CVD) is now a well-established method for creating monolayer graphene films. In this method, poly(methyl methacrylate) (PMMA) films are often coated onto monolayer graphene films to make them mechanically robust enough for transfer and further handling. However, it is found that PMMA is hard to remove entirely, and any residual polymers remaining can affect graphenes properties. We demonstrate here a method to determine the amount of PMMA remaining on the graphene sheet fabricated from CVD by a combined study of Raman scattering, atomic force microscopy, and neutron reflection. Neutron reflectivity is a powerful technique which is particularly sensitive to any interfacial structure, so it is able to investigate the density profile of the residual PMMA in the direction perpendicular to the graphene film surface. After the standard process of PMMA removal by acetone-IPA cleaning, we found that the remaining PMMA film could be represented as a two-layer model: an inner layer with a thickness of 17 Å and a roughness of 1 Å mixed with graphene and an outer diffuse layer with an average thickness of 31 Å and a roughness of 4 Å well mixed with water. On the basis of this model analysis, it was demonstrated that the remaining PMMA still occupied a significant fraction of the graphene film surface.


mAbs | 2017

Antibody adsorption on the surface of water studied by neutron reflection

Charles Smith; Zongyi Li; Robert Holman; Fang Pan; Richard A. Campbell; Mario Campana; Peixun Li; John R. P. Webster; Steven M. Bishop; Rojaramani Narwal; Shahid Uddin; Christopher F. van der Walle; Jian R. Lu

ABSTRACT Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody ‘COE-3′ as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied.


ACS Applied Materials & Interfaces | 2017

Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb

Zongyi Li; Ruiheng Li; Charles Smith; Fang Pan; Mario Campana; John R. P. Webster; Christopher F. van der Walle; Shahid Uddin; Steve M. Bishop; Rojaramani Narwal; Jim Warwicker; Jian R. Lu

Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

Collaboration


Dive into the Zongyi Li's collaboration.

Top Co-Authors

Avatar

Jian R. Lu

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Fang Pan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Hai Xu

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar

Elias Pambou

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

John R. P. Webster

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mario Campana

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ruiheng Li

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Jiqian Wang

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar

Charles Smith

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge