Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zorana Jovanovic Andersen is active.

Publication


Featured researches published by Zorana Jovanovic Andersen.


Lancet Oncology | 2013

Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Ole Raaschou-Nielsen; Zorana Jovanovic Andersen; Rob Beelen; Evangelia Samoli; Massimo Stafoggia; Gudrun Weinmayr; Barbara Hoffmann; Paul Fischer; Mark J. Nieuwenhuijsen; Bert Brunekreef; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Johan Nilsson Sommar; Bertil Forsberg; Lars Modig; Anna Oudin; Bente Oftedal; Per E. Schwarze; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Göran Pershagen; Kirsten Thorup Eriksen; Mette Sørensen; Anne Tjønneland

BACKGROUND Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. METHODS This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. FINDINGS The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day). INTERPRETATION Particulate matter air pollution contributes to lung cancer incidence in Europe. FUNDING European Communitys Seventh Framework Programme.


The Lancet | 2014

Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project

Rob Beelen; Ole Raaschou-Nielsen; Massimo Stafoggia; Zorana Jovanovic Andersen; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Paul Fischer; Mark J. Nieuwenhuijsen; Paolo Vineis; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Anna Oudin; Bertil Forsberg; Lars Modig; Aki S. Havulinna; Timo Lanki; Anu W. Turunen; Bente Oftedal; Wenche Nystad; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Göran Pershagen

BACKGROUND Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. METHODS We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. FINDINGS The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). INTERPRETATION Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. FUNDING European Communitys Seventh Framework Program (FP7/2007-2011).


Environment International | 2011

Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment

Audrey de Nazelle; Mark J. Nieuwenhuijsen; Josep Maria Antó; Michael Brauer; David Briggs; Charlotte Braun-Fahrländer; Nick Cavill; Ashley R Cooper; Hélène Desqueyroux; Scott Fruin; Gerard Hoek; Luc Int Panis; Nicole A.H. Janssen; Michael Jerrett; Michael Joffe; Zorana Jovanovic Andersen; Elise van Kempen; Simon Kingham; Nadine Kubesch; Kevin M. Leyden; Julian D. Marshall; Jaume Matamala; Giorgos Mellios; Michelle A. Mendez; Hala Nassif; David Ogilvie; Rosana Peiró; Katherine Pérez; Ari Rabl; Martina S. Ragettli

BACKGROUND Substantial policy changes to control obesity, limit chronic disease, and reduce air pollution emissions, including greenhouse gasses, have been recommended. Transportation and planning policies that promote active travel by walking and cycling can contribute to these goals, potentially yielding further co-benefits. Little is known, however, about the interconnections among effects of policies considered, including potential unintended consequences. OBJECTIVES AND METHODS We review available literature regarding health impacts from policies that encourage active travel in the context of developing health impact assessment (HIA) models to help decision-makers propose better solutions for healthy environments. We identify important components of HIA models of modal shifts in active travel in response to transport policies and interventions. RESULTS AND DISCUSSION Policies that increase active travel are likely to generate large individual health benefits through increases in physical activity for active travelers. Smaller, but population-wide benefits could accrue through reductions in air and noise pollution. Depending on conditions of policy implementations, risk tradeoffs are possible for some individuals who shift to active travel and consequently increase inhalation of air pollutants and exposure to traffic injuries. Well-designed policies may enhance health benefits through indirect outcomes such as improved social capital and diet, but these synergies are not sufficiently well understood to allow quantification at this time. CONCLUSION Evaluating impacts of active travel policies is highly complex; however, many associations can be quantified. Identifying health-maximizing policies and conditions requires integrated HIAs.


BMJ | 2014

Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project

Giulia Cesaroni; Francesco Forastiere; Massimo Stafoggia; Zorana Jovanovic Andersen; Chiara Badaloni; Rob Beelen; Barbara Caracciolo; Ulf de Faire; Raimund Erbel; Kirsten Thorup Eriksen; Laura Fratiglioni; Claudia Galassi; Regina Hampel; Margit Heier; Frauke Hennig; Agneta Hilding; Barbara Hoffmann; Danny Houthuijs; Karl-Heinz Jöckel; Michal Korek; Timo Lanki; Karin Leander; Patrik K. E. Magnusson; Enrica Migliore; Caes-Göran Ostenson; Kim Overvad; Nancy L. Pedersen; Juha Pekkanen J; Johanna Penell; Göran Pershagen

Objectives To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Design Prospective cohort studies and meta-analysis of the results. Setting Cohorts in Finland, Sweden, Denmark, Germany, and Italy. Participants 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. Main outcome measures Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. Results 5157 participants experienced incident events. A 5 μg/m3 increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m3 increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m3 for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m3 increase in PM2.5) and below 40 μg/m3 for PM10 (1.12, 1.00 to 1.27, for 10 μg/m3 increase in PM10). Positive but non-significant associations were found with other pollutants. Conclusions Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.


American Journal of Respiratory and Critical Care Medicine | 2011

Chronic Obstructive Pulmonary Disease and Long-Term Exposure to Traffic-related Air Pollution: A Cohort Study

Zorana Jovanovic Andersen; Martin Hvidberg; Steen Solvang Jensen; Matthias Ketzel; Steffen Loft; Mette Sørensen; Anne Tjønneland; Kim Overvad; Ole Raaschou-Nielsen

RATIONALE Short-term exposure to air pollution has been associated with exacerbation of chronic obstructive pulmonary disease (COPD), whereas the role of long-term exposures on the development of COPD is not yet fully understood. OBJECTIVES We assessed the effect of exposure to traffic-related air pollution over 35 years on the incidence of COPD in a prospective cohort study. METHODS We followed 57,053 participants in the Danish Diet, Cancer, and Health cohort in the Hospital Discharge Register for their first hospital admission for COPD between 1993 and 2006. We estimated the annual mean levels of nitrogen dioxide (NO₂) and nitrogen oxides (NO(x)) at all residential addresses of the cohort participants since 1971 to an event or 2006 and used indicators of traffic near the residential address at recruitment. We assessed the association between exposure to air pollution and COPD incidence by Cox regression analyses for the full cohort, and for participants with and without comorbid conditions, including asthma, diabetes, or cardiovascular disease. MEASUREMENTS AND MAIN RESULTS A first hospital admission for COPD was recorded for 1,786 (3.4%) of 52,799 eligible subjects between recruitment (1993-1997) and 2006. COPD incidence was associated with the 35-year mean NO₂ level (hazard ratio, 1.08; 95% confidence interval, 1.02-1.14, per interquartile range of 5.8 μg/m³), with stronger associations in subjects with diabetes (1.29; 1.05-1.50) and asthma (1.19; 1.03-1.38). CONCLUSIONS Long-term exposure to traffic-related air pollution may contribute to the development of COPD with possibly enhanced susceptibility in people with diabetes and asthma.


Environmental Health Perspectives | 2013

Long-Term Exposure to Road Traffic Noise and Incident Diabetes: A Cohort Study

Mette Sørensen; Zorana Jovanovic Andersen; Rikke Baastrup Nordsborg; Thomas Becker; Anne Tjønneland; Kim Overvad; Ole Raaschou-Nielsen

Background: Road traffic noise at normal urban levels can lead to stress and sleep disturbances. Both excess of stress hormones and reduction in sleep quality and duration may lead to higher risk for type 2 diabetes. Objective: We investigated whether long-term exposure to residential road traffic noise is associated with an increased risk of diabetes. Methods: In the population-based Danish Diet, Cancer and Health cohort of 57,053 people 50–64 years of age at enrollment in 1993–1997, we identified 3,869 cases of incident diabetes in a national diabetes registry between enrollment and 2006. The mean follow-up time was 9.6 years. Present and historical residential addresses from 1988 through 2006 were identified using a national register, and exposure to road traffic noise was estimated for all addresses. Associations between exposure to road traffic noise and incident diabetes were analyzed in a Cox regression model. Results: A 10-dB higher level of average road traffic noise at diagnosis and during the 5 years preceding diagnosis was associated with an increased risk of incident diabetes, with incidence rate ratios (IRR) of 1.08 (95% CI: 1.02, 1.14) and 1.11 (95% CI: 1.05, 1.18), respectively, after adjusting for potential confounders including age, body mass index, waist circumference, education, air pollution (nitrogen oxides), and lifestyle characteristics. After applying a stricter definition of diabetes (2,752 cases), we found IRRs of 1.11 (95% CI: 1.03, 1.19) and 1.14 (95% CI: 1.06, 1.22) per 10-dB increase in road traffic noise at diagnosis and during the 5 years preceding diagnosis, respectively. Conclusion: Exposure to residential road traffic noise was associated with a higher risk of diabetes. This study provides further evidence that urban noise may adversely influence population health.


Diabetes Care | 2012

Diabetes incidence and long-term exposure to air pollution: a cohort study.

Zorana Jovanovic Andersen; Ole Raaschou-Nielsen; Matthias Ketzel; Steen Solvang Jensen; Martin Hvidberg; Steffen Loft; Anne Tjønneland; Kim Overvad; Mette Sørensen

OBJECTIVE Animal and cross-sectional epidemiological studies suggest a link between air pollution and diabetes, whereas the limited prospective data show mixed results. We studied the association between long-term exposure to traffic-related air pollution and incidence of diabetes. RESEARCH DESIGN AND METHODS We followed 57,053 participants of the Danish Diet, Cancer, and Health cohort in the Danish National Diabetes Register between baseline (1993–1997) and 27 June 2006. We estimated the mean levels of nitrogen dioxide (NO2) at the residential addresses of the cohort participants since 1971 and modeled the association between NO2 and diabetes incidence with a Cox regression model, separately for two definitions of diabetes: all cases and a more strict definition where unconfirmed cases were excluded. RESULTS Over a mean follow-up of 9.7 years of 51,818 eligible subjects, there were 4,040 (7.8%) incident diabetes cases in total and 2,877 (5.5%) with confirmed diagnoses. Air pollution was not associated with all diabetes cases (hazard ratio 1.00 [95% CI 0.97–1.04] per interquartile range of 4.9 μg/m3 mean NO2 levels since 1971), but a borderline statistically significant association was detected with confirmed cases of diabetes (1.04 [1.00–1.08]). Among confirmed diabetes cases, effects were significantly enhanced in nonsmokers (1.12 [1.05–1.20]) and physically active people (1.10 [1.03–1.16]). CONCLUSIONS Long-term exposure to traffic-related air pollution may contribute to the development of diabetes, especially in individuals with a healthy lifestyle, nonsmokers, and physically active individuals.


International Journal of Cancer | 2004

Increased risk of breast cancer following different regimens of hormone replacement therapy frequently used in Europe.

Claudia Stahlberg; Anette Tønnes Pedersen; Elsebeth Lynge; Zorana Jovanovic Andersen; Niels Keiding; Yrsa Andersen Hundrup; Erik B. Obel; Bent Ottesen

Epidemiologic studies have shown an increased risk of breast cancer following hormone replacement therapy (HRT). The aim of this study was to investigate whether different treatment regimens or the androgenecity of progestins influence the risk of breast cancer differently. The Danish Nurse Cohort was established in 1993, where all female nurses aged 45 years and above received a mailed questionnaire (n = 23,178). A total of 19,898 women returned the questionnaire (86%). The questionnaire included information on HRT types and regimens, reproductive history and lifestyle‐related factors. Breast cancer cases were ascertained using nationwide registries. The follow‐up ended on 31 December 1999. Women with former cancer diagnoses, women with missing information on HRT, surgical menopause, premenopausal, as well as hysterectomized women were excluded, leaving 10,874 for analyses. Statistical analyses were performed using Cox proportional hazards model. A total of 244 women developed breast cancer during follow‐up. After adjustment for confounding factors, an increased risk of breast cancer was found for the current use of estrogen only (RR = 1.96; 95% CI = 1.16–3.35), for the combined use of estrogen and progestin (RR = 2.70; 95% CI = 1.96–3.73) and for current users of tibolone (RR = 4.27; 95% CI = 1.74–10.51) compared to the never use of HRT. In current users of combined HRT with testosterone‐like progestins, the continuous combined regimens were associated with a statistically significant higher risk of breast cancer than the cyclical combined regimens (RR = 4.16, 95% CI = 2.56–6.75, and RR = 1.94, 95% CI = 1.26–3.00, respectively). An increased risk of breast cancer was noted with longer durations of use for the continuous combined regimens (p for trend = 0.048). The European traditional HRT regimens were associated with an increased risk of breast cancer. The highest risk was found for the use of continuous combined estrogen and progestin.


European Heart Journal | 2011

Road traffic noise and stroke: a prospective cohort study

Mette Sørensen; Martin Hvidberg; Zorana Jovanovic Andersen; Rikke Baastrup Nordsborg; Kenneth G. Lillelund; Jørgen Jakobsen; Anne Tjønneland; Kim Overvad; Ole Raaschou-Nielsen

AIMS Epidemiological studies suggest that long-term exposure to road traffic noise increases the risk of cardiovascular disorders. The aim of this study was to investigate the relation between exposure to road traffic noise and risk for stroke, which has not been studied before. METHODS AND RESULTS In a population-based cohort of 57,053 people, we identified 1881 cases of first-ever stroke in a national hospital register between 1993-1997 and 2006. Exposure to road traffic noise and air pollution during the same period was estimated for all cohort members from residential address history. Associations between exposure to road traffic noise and stroke incidence were analysed in a Cox regression model with stratification for gender and calendar-year and adjustment for air pollution and other potential confounders. We found an incidence rate ratio (IRR) of 1.14 for stroke [95% confidence interval (CI): 1.03-1.25] per 10 dB higher level of road traffic noise (L(den)). There was a statistically significant interaction with age (P < 0.001), with a strong association between road traffic noise and stroke among cases over 64.5 years (IRR: 1.27; 95% CI: 1.13-1.43) and no association for those under 64.5 years (IRR: 1.02; 95% CI: 0.91-1.14). CONCLUSION Exposure to residential road traffic noise was associated with a higher risk for stroke among people older than 64.5 years of age.


Journal of Exposure Science and Environmental Epidemiology | 2007

Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen.

Zorana Jovanovic Andersen; Peter Wåhlin; Ole Raaschou-Nielsen; Thomas H. Scheike; Steffen Loft

An association between particulate air pollution and morbidity and mortality is well established. However, little is known about which sources of particulate matter contribute most to the adverse health effects. Identification of responsible sources would merit more efficient control. For a 6-year period (01 January 1999 to 31 December 2004), we examined associations between urban background PM10 in the presence of gaseous pollutants (CO, NO2) and hospital admissions due to cardiovascular and respiratory disease in the elderly (age≥65), and asthma in children (age 5–18) in Copenhagen, Denmark. We further studied associations between fractions of PM10 assigned to six sources (biomass, secondary, oil, crustal, sea salt, and vehicle) and admissions during a 1½ -year campaign. We used Poisson generalized additive time-series model adjusted for season, day of the week, public holidays, influenza epidemics, grass pollen, school holidays, and meteorology, with up to 5 days lagged air pollution exposure. We found positive associations between PM10 and the three health outcomes, with strongest associations for asthma. The PM10 effect remained robust in the presence of CO and NO2. We found different PM10 sources to be variably associated with different outcomes: crustal and secondary sources showed strongest associations with cardiovascular, biomass with respiratory, and vehicle with asthma admissions. These novel results may merit future research of potential mechanism, whereas at present, no single PM10 source can be attributed to all morbidity.

Collaboration


Dive into the Zorana Jovanovic Andersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Loft

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mette Sørensen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge