Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zorica Janjetovic is active.

Publication


Featured researches published by Zorica Janjetovic.


The FASEB Journal | 2012

In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1

Andrzej Slominski; Tae Kang Kim; Haleem Z. Shehabi; Igor Semak; Edith K.Y. Tang; Minh N. Nguyen; Heather A. E. Benson; Elena Korik; Zorica Janjetovic; Jianjun Chen; Charles R. Yates; Arnold E. Postlethwaite; Wei Li; Robert C. Tuckey

We define previously unrecognized in vivo pathways of vitamin D3 (D3) metabolism generating novel D3‐hydroxyderivatives different from 25‐hydroxyvitamin D3 [25(OH)D3] and 1,25(OH)2D3. Their novel products include 20‐hydroxyvitamin D3 [20(OH)D3], 22(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 1,20(OH)2D3,1,20,23(OH)3D3, and 17,20,23(OH)3D3 and were produced by placenta, adrenal glands, and epidermal keratinocytes. We detected the predominant metabolite [20(OH)D3] in human serum with a relative concentration ~20 times lower than 25(OH)D3. Use of inhibitors and studies performed with isolated mitochondria and purified enzymes demonstrated involvement of the steroidogenic enzyme cytochrome P450scc (CYP11A1) as well as CYP27B1 (1α‐hydroxylase). In placenta and adrenal glands with high CYP11A1 expression, the predominant pathway was D3 → 20(OH)D3 → 20,23(OH)2D3 → 17,20,23(OH)3D3 with further 1α‐hydroxylation, and minor pathways were D3 → 25(OH)D3 → 1,25(OH)2D3 and D3 → 22(OH)D3 → 20,22(OH)2D3. In epidermal keratinocytes, we observed higher proportions of 22(OH)D3 and 20,22(OH)2D3. We also detected endogenous production of 20(OH)D3, 22(OH) D3, 20,23(OH)2D3, 20,22(OH)2D3, and 17,20,23(OH)3D3 by immortalized human keratinocytes. Thus, we provide in vivo evidence for novel pathways of D3 metabolism initiated by CYP11A1, with the product profile showing organ/cell type specificity and being modified by CYP27B1 activity. These findings define the pathway intermediates as natural products/endogenous bioregulators and break the current dogma that vitamin D is solely activated through the sequence D3 → 25(OH)D3 → 1,25(OH)2D3.—Slominski, A. T., Km, T.‐K., Shehabi, H. Z., Semak, I., Tang, E. K. Y., Nguyen, M. N., Benson, H. A. E., Korik, E., Janjetovic, Z., Chen, J., Yates, C. R., Postlethwaite, A., Li, W., Tuckey, R. C. In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 26, 3901–3915 (2012). www.fasebj.org


Journal of Investigative Dermatology | 2008

20-Hydroxyvitamin D3, a Product of Vitamin D3 Hydroxylation by Cytochrome P450scc, Stimulates Keratinocyte Differentiation

Blazej Zbytek; Zorica Janjetovic; Robert C. Tuckey; Michal A. Zmijewski; Trevor W. Sweatman; Emily Jones; Minh N. Nguyen; Andrzej Slominski

It has been shown that mammalian cytochrome P450scc can metabolize vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,22(OH)2D3. To define the biological significance of this pathway, we tested the effects of 20(OH)D3 on the differentiation program of keratinocytes and on the expression of enzymes engaged in vitamin D3 metabolism. Immortalized HaCaT and adult human epidermal keratinocytes were used as a model and the effects of 20(OH)D3 were compared with those of 25(OH)D3 and 1,25(OH)2D3. 20(OH)D3 inhibited proliferation and caused G2/M arrest. 20(OH)D3 stimulated involucrin and inhibited cytokeratin 14 expression. The potency of 20(OH)D3 was comparable to that of 1,25(OH)2D3. 20(OH)D3 decreased the expression of cytochrome P450 enzyme (CYP)27A1 and CYP27B1, however, having only slight effect on CYP24. The effect of 20(OH)D3 was dependent on the vitamin D receptor (VDR). As shown by electrophoretic mobility shift assay, 20(OH)D3 stimulated the binding of nuclear proteins to the VDRE. Transfection of cells with VDR-specific siRNA decreased 20(OH)D3-stimulated transcriptional activity of the VDRE promoter and the expression of involucrin and CYP24 mRNA. Therefore, the above studies identify 20(OH)D3 as a biologically active secosteroid that induces keratinocyte differentiation. These data imply that the previously unreported pathway of vitamin D3 metabolism by P450scc may have wider biological implications depending, for example, on the extent of adrenal gland or cutaneous metabolism.


PLOS ONE | 2009

20-Hydroxycholecalciferol, Product of Vitamin D3 Hydroxylation by P450scc, Decreases NF-κB Activity by Increasing IκBα Levels in Human Keratinocytes

Zorica Janjetovic; Michal A. Zmijewski; Robert C. Tuckey; Damon A. DeLeon; Minh N. Nguyen; Lawrence M. Pfeffer; Andrzej Slominski

The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1) to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-κB (NF-κB) plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-κB, using 1,25-dihydroxycholecalciferol (calcitriol) as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFκB DNA binding activity as well as NF-κB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-κB inhibitor protein, IκBα, in a time dependent manner, while no changes in total NF-κB-p65 mRNA or protein levels were observed. Another measure of NF-κB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IκBα was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR), 20-hydroxycholecalciferol did not affect IκBα mRNA levels, indicating that it requires VDR for its action on NF-κB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-κB. Since NF-κB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases.


PLOS ONE | 2010

Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity.

Andrzej Slominski; Zorica Janjetovic; Brian E. Fuller; Michal A. Zmijewski; Robert C. Tuckey; Minh N. Nguyen; Trevor W. Sweatman; Wei Li; Jordan K. Zjawiony; Duane D. Miller; Tai C. Chen; Gerard Lozanski; Michael F. Holick

Background Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1α,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). Methods and Findings To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. Conclusions We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.


American Journal of Physiology-cell Physiology | 2011

20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells

Andrzej Slominski; Tae Kang Kim; Zorica Janjetovic; Robert C. Tuckey; Radoslaw Bieniek; Junming Yue; Wei Li; Jianjun Chen; Minh N. Nguyen; Edith K.Y. Tang; Duane D. Miller; Tai C. Chen; Michael F. Holick

20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.


The FASEB Journal | 2014

RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D

Andrzej Slominski; Tae Kang Kim; Yukimasa Takeda; Zorica Janjetovic; Anna A. Brożyna; Cezary Skobowiat; Jin Wang; Arnold E. Postlethwaite; Wei Li; Robert C. Tuckey; Anton M. Jetten

RORα and RORγ are expressed in human skin cells that produce the noncalcemic 20‐hydroxyvitamin D3 [20(OH)D3] and 20,23‐dihydroxyvitamin D3 [20,23(OH)2D3]. Chinese hamster ovary (CHO) cells stably expressing a Tet‐on RORα or RORγ expression vector and a ROR‐responsive element (RORE)‐LUC reporter, and a mammalian 2‐hybrid model examining the interaction between the ligand binding domain (LBD) of RORα or RORγ with an LBD‐interacting LXXLL‐peptide, were used to study ROR‐antagonist activities. These assays revealed that 20(OH)D3 and 20,23(OH)2D3 function as antagonists of RORα and RORγ. Moreover, 20(OH)D3 inhibited the activation of the promoter of the Bmal1 and G6pase genes, targets of RORα, and 20(OH)D3 and 20,23(OH)2D3 inhibited Il17 promoter activity in Jurkat cells overexpressing RORα or RORγ. Molecular modeling using crystal structures of the LBDs of RORα and RORγ revealed docking scores for 20(OH)D3, 20, 23(OH)2D3 and 1,25(OH)2D3 similar to those of the natural ligands, predicting good binding to the receptor. Notably, 20(OH)D3, 20,23(OH)2D3, and 1,25(OH)2D3 inhibited RORE‐mediated activation of a reporter in keratinocytes and melanoma cells and inhibited IL‐17 production by immune cells. Our study identifies a novel signaling pathway, in which 20(OH)D3 and 20,23(OH)2D3 act as antagonists or inverse agonists of RORα and RORγ, that opens new possibilities for local (skin) or systemic regulation.—Slominski, A. T., Kim, T.‐K., Takeda, Y., Janjetovic, Z., Brożyna, A. A., Skobowiat, C., Wang, J., Postlethwaite, A., Li, W., Tuckey, R. C., Jetten, A. M. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20‐hydroxy‐ and 20,23‐dihydroxyvitamin D. FASEB J. 28, 2775–2789 (2014). www.fasebj.org


International Journal of Molecular Sciences | 2014

Local Melatoninergic System as the Protector of Skin Integrity

Andrzej Slominski; Konrad Kleszczyński; Igor Semak; Zorica Janjetovic; Michał A. Żmijewski; Tae Kang Kim; Radomir M. Slominski; Russel J. Reiter; Tobias W. Fischer

The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.


PLOS ONE | 2009

Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

Andrzej Slominski; Michal A. Zmijewski; Igor Semak; Trevor W. Sweatman; Zorica Janjetovic; Wei Li; Jordan K. Zjawiony; Robert C. Tuckey

Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation.


Journal of Cellular Physiology | 2009

20,23-dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NF-κB activity in human keratinocytes

Zorica Janjetovic; Robert C. Tuckey; Minh N. Nguyen; Edwin M. Thorpe; Andrzej Slominski

We have examined effects of the 20,23‐dihydroxyvitamin D3 (20,23(OH)2D3), on differentiation and proliferation of human keratinocytes and the anti‐inflammatory potential of 20,23(OH)2D3 from its action on nuclear factor‐κB (NF‐κB). 20,23(OH)2D3 inhibited growth of keratinocytes with a potency comparable to that for 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3). Cell cycle analysis showed that this inhibition was associated with G1/G0 and G2/M arrests. 20,23(OH)2D3 stimulated production of involucrin mRNA and inhibited production of cytokeratin 14 mRNA in a manner similar to that seen for 1,25(OH)2D3. Flow cytometry showed that these effects were accompanied by increased involucrin protein expression, and an increase in the cell size and granularity. Silencing of the vitamin D receptor (VDR) by corresponding siRNA abolished the stimulatory effect on involucrin gene expression demonstrating an involvement of VDR in 20,23(OH)2D3 action. This mode of action was further substantiated by stimulation of CYP24 gene expression and stimulation of the CYP24 promoter‐driven reporter gene activity. 20,23(OH)2D3 displayed several fold lower potency for induction of CYP24 gene expression than 1,25(OH)2D3. Finally, 20,23(OH)2D3 inhibited the transcriptional activity of NF‐κB in keratinocytes as demonstrated by EMSA, NF‐κB‐driven reporter gene activity assays and measurements of translocation of p65 from the cytoplasm to the nucleus. These inhibitory effects were connected with stimulation of the expression of IκBα with subsequent sequestration of NF‐κB in the cytoplasm and consequent attenuation of transcriptional activity. In summary, we have characterized 20,23(OH)2D3 as a novel secosteroidal regulator of keratinocytes proliferation and differentiation and a modifier of their immune activity. J. Cell. Physiol. 223: 36–48, 2010.


Archives of Biochemistry and Biophysics | 2014

The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways

Andrzej Slominski; Tae Kang Kim; Anna A. Brożyna; Zorica Janjetovic; D.L.P. Brooks; Luciana P. Schwab; Cezary Skobowiat; Wojciech Jóźwicki; Tiffany N. Seagroves

To study the effect of melanogenesis on HIF-1α expression and attendant pathways, we used stable human and hamster melanoma cell lines in which the amelanotic vs. melanotic phenotypes are dependent upon the concentration of melanogenesis precursors in the culture media. The induction of melanin pigmentation led to significant up-regulation of HIF-1α, but not HIF-2α, protein in melanized cells for both lines. Similar upregulation of nuclear HIF-1α was observed in excisions of advanced melanotic vs. amelanotic melanomas. In cultured cells, melanogenesis also significantly stimulated expression of classical HIF-1-dependent target genes involved in angiogenesis and cellular metabolism, including glucose metabolism and stimulation of activity of key enzymes in the glycolytic pathway. Several other stress related genes containing putative HRE consensus sites were also upregulated by melanogenesis, concurrently with modulation of expression of HIF-1-independent genes encoding for steroidogenic enzymes, cytokines and growth factors. Immunohistochemical studies using a large panel of pigmented lesions revealed that higher levels of HIF-1α and GLUT-1 were detected in advanced melanomas in comparison to melanocytic nevi or thin melanomas localized to the skin. However, the effects on overall or disease free survival in melanoma patients were modest or absent for GLUT-1 or for HIF-1α, respectively. In conclusion, induction of the melanogenic pathway leads to robust upregulation of HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role for melanogenesis in regulation of cellular metabolism.

Collaboration


Dive into the Zorica Janjetovic's collaboration.

Top Co-Authors

Avatar

Andrzej Slominski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robert C. Tuckey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Wei Li

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jianjun Chen

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Minh N. Nguyen

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Duane D. Miller

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Tae Kang Kim

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Arnold E. Postlethwaite

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae-Kang Kim

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge