Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zorica Stojić-Vukanić is active.

Publication


Featured researches published by Zorica Stojić-Vukanić.


Journal of Pharmacy and Pharmaceutical Sciences | 2010

Quercetin Ameliorates Experimental Autoimmune Myocarditis in Rats

Marina Milenković; Nevena Arsenović-Ranin; Zorica Stojić-Vukanić; Biljana Bufan; Dragana Vučićević; Ivan Jančić

PURPOSE Experimental autoimmune myocarditis (EAM) in rats is an animal model of human giant cell myocarditis and post-myocarditis dilated cardiomyopathy. The pathogenesis of EAM has not been elucidated, but there is accumulating evidence that cytokines secreted from monocytes/macrophages and T cells play a crucial role in the induction and progression of disease. Flavonoids are a large group of polyphenolic compounds abundantly present in the human diet, which scavenge oxygen radicals and have anti-inflammatory activities. Having in mind in vivo beneficial effects of flavonoid quercetin in different animal models of immunoinflammatory diseases such as experimental autoimmune encephalomyelitis and adjuvant arthritis, on the one side, and its in vitro suppressive effect on production of tumor necrosis factor-alpha (TNF-α) on the other side, we investigated the effects of quercetin on EAM in rats. METHODS Myocarditis was induced in Dark Agouti (DA) rats by injection of porcine cardiac myosin and quercetin at doses of 10 or 20 mg/kg was orally administered from days 0 to 21 after induction of disease. The severity of myocarditis was evaluated by determination of heart weight/body weight ratio (Hw/Bw) and histopathological examination of hearts. The levels of cytokines (TNF-α, IL-12, IL-17 and IL-10) in serum and lymph node cells (LNC) culture supernatants were measured by ELISA. RESULTS The rats treated with 20 mg/kg of quercetin had significantly decreased incidence of EAM, Hw/Bw, macroscopic and microscopic scores of hearts. Further, in EAM rats treated with quercetin levels of TNF-α and IL-17 were significantly lower, while the level of IL-10 was significantly higher both in serum and culture supernatants of LNC stimulated with concanavalin A compared with vehicle-treated animals. CONCLUSIONS The present study suggests that quercetin ameliorates EAM, at least in part, by interfering production of proinflammatory (TNF-α and IL-17) and/or anti-inflammatory (IL-10) cytokines.


Experimental Gerontology | 2014

Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis

Jasmina Djikić; Mirjana Nacka-Aleksić; Ivan Pilipović; Zorica Stojić-Vukanić; Biljana Bufan; Duško Kosec; Mirjana Dimitrijević; Gordana Leposavić

Aging is associated with the decline in immune response to infectious agents and tumors and increasing risk of autoimmunity, but the incidence of autoimmune diseases does not increase in the elderly. To elucidate the cellular and molecular mechanisms influencing clinical expression of autoimmunity in aged animals, the phenotypic and functional characteristics of mononuclear cells isolated from the spinal cords of 3-month-old (young) and 26-month-old (aged) Dark Agouti rats immunized to induce experimental autoimmune encephalomyelitis (EAE) - the model of multiple sclerosis, the most common autoimmune disease of the central nervous system, were examined. Aged rats were less susceptible to EAE induction, and the neurological and histological picture was milder in those rats which developed the clinically manifested disease. At the peak of the disease, several times fewer mononuclear cells and T lymphocytes were isolated from the spinal cords of aged rats compared with the young ones. The frequency of CD4+ cells among TCRαβ+ lymphocytes, as well as that of reactivated CD134(OX40)+ cells within its CD4+ T-lymphocyte subpopulation, was less in spinal cords of aged compared with young rats. Additionally, CD134 surface density on CD4+ lymphocytes was decreased in the spinal cord of aged rats. The changes in CD134 expression most likely reflected in part age-related intrinsic changes in CD4+ lymphocytes as the expression of this molecule was also impaired on in vitro stimulated naïve CD4+ splenocytes from aged rats compared with young animals. In addition, greater frequency of CD8+ lymphocytes with regulatory phenotypes could also contribute to impaired CD4+ cell reactivation in aged rats. The increased apoptosis of CD4+ cells from aged rats was consistent with their impaired reactivation and it was accompanied by the greater frequency of CD4+CD11b+CD45(int/high) cells, which are supposed to be actively engaged in apoptotic cell phagocytosis and to have immunoregulatory properties. Compared with young rats, following short-term PMA and ionomycin stimulation in vitro, the frequency of IL-17+ and IFN-γ+CD4+ T lymphocytes among the spinal cord mononuclear cells from aged rats and the cytokine expression density on a per lymphocyte basis were reduced. Additionally, the increase in the proportion of autoregulatory IL-17+IL-10+ cells on the account of proinflammatory IL-17+IFN-γ+ cells within IL-17+ lymphocytes suggested their lower pathogenic capacity in aged rats. This most likely reflected alterations in the aged rat spinal cord cytokine milieu, which were mirrored in a diminished expression of IL-1β mRNA followed by an enhanced expression of IL-6 and TGF-β mRNA. Overall, the study points to age-related changes in T lymphocytes and other cells from the spinal cord infiltrate which could contribute to the decreased susceptibility of aged rats to the induction of EAE.


Experimental Gerontology | 2010

Age-associated plasticity of α1-adrenoceptor-mediated tuning of T-cell development

Gordana Leposavić; Vesna Pešić; Zorica Stojić-Vukanić; Katarina Radojević; Nevena Arsenović-Ranin; Duško Kosec; Milica Perišić; Ivan Pilipović

Alpha(1)-adrenoceptors (α(1)-ARs) are involved in neuro-thymic and thymic intercellular communications, and consequently modulation of T-cell development. Ageing is associated with a number of changes in noradrenergic neuro-effector transmission, and possibly intercellular noradrenaline (NA)-mediated communication resulting in altered responses of target cells to NA. Thus, in old animals an altered NA modulation of thymopoiesis via α(1)-ARs may be expected. To test this hypothesis, in old and young adult Wistar rats we examined: 1) thymic NA levels, density of noradrenergic innervation and NA synthesizing cells, as well as α(1)-AR expression, and 2) then the effects of 14-day-long treatment with the α(1)-AR blocker, urapidil, on thymocyte development. Overall, the first part of study suggested augmented NA signalling to thymic cells via α(1)-ARs due to increased NA availability and α(1)-AR thymocyte surface density in old rats. The second part of study supported this assumption. Namely, although in rats of both ages urapidil affected the same thymocyte developmental steps ultimately leading to changes in the relative number of the most mature single positive TCRαβ(high) thymocytes, its effects were generally more prominent in old animals. Following urapidil treatment, the percentages of CD4+CD8- cells, including those showing a regulatory CD4+CD25+RT6.1- phenotype, were increased, while CD4-CD8+ cells decreased. In old rats, an augmented thymic escape of immature CD4+CD8+ cells was also registered. In rats of both ages the thymic changes were accompanied by alterations in the proportions of major cell populations in the T-lymphocyte compartment of both peripheral blood and spleen, leading to an increase in the CD4+/CD8+ T-cell ratio. These alterations were also more pronounced in old rats. Moreover, in old rats following urapidil treatment the proportion of TCRαβ+cells in the periphery was slightly greater reflecting, most likely, partly enhanced thymic production of regulatory CD161+TCRαβ+cells. Thus, the study indirectly suggests an age-associated increase in the basal α(1)-AR-mediated inhibitory influence of NA on thymopoiesis.


Archives of Medical Research | 2008

Beneficial Effects of Dimethyl Fumarate on Experimental Autoimmune Myocarditis

Marina Milenković; Nevena Arsenović-Ranin; Dragana Vučićević; Biljana Bufan; Ivan Jančić; Zorica Stojić-Vukanić

BACKGROUND Fumaric acid esters (FAE) have been proven to be effective for the systemic treatment of psoriasis and multiple sclerosis, Th1 cell-mediated chronic inflammatory diseases, but their effect on autoimmune myocarditis has not yet been addressed. We investigated the effect of dimethyl fumarate (DMF) on myosin-induced experimental autoimmune myocarditis (EAM). METHODS Dark Agouti (DA) rats immunized with porcine cardiac myosin were orally treated with 5 and 15 mg/kg body weight (bw) DMF either from days 0-10 (early treatment groups) or from days 10-21 (late treatment groups) after induction of EAM. All rats were sacrificed on day 21 after immunization and hearts were evaluated macroscopically and microscopically. Levels of TNF-alpha and IL-10 in serum and lymph node cells culture supernatants were detected by ELISA. RESULTS Both early and late treatment with 15 mg/kg body weight (bw) DMF markedly reduced the severity of myocarditis by comparing the incidence, heart weight/bw ratio, macroscopic and microscopic scores, and number of OX-6+ cells in the myocardium. Further, levels of tumor necrosis factor-alpha (TNF-alpha) in serum and culture supernatants of lymph node cells stimulated with ConA or myosin were significantly lower in DMF-treated EAM animals compared with vehicle-treated EAM rats. There was no significant difference in serum levels of interleukin-10 between DMF- and vehicle-treated EAM rats. CONCLUSIONS These results show for the first time that DMF ameliorates experimental autoimmune myocarditis and may be acted, at least in part, by interfering with the production of TNF-alpha.


Brain Behavior and Immunity | 2009

Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats

Gordana Leposavić; Milica Perišić; Duško Kosec; Nevena Arsenović-Ranin; Katarina Radojević; Zorica Stojić-Vukanić; Ivan Pilipović

Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterone on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCRalphabeta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic defeminization/masculinization of thymic (decreased CD4+CD8-TCRalphabeta(high)/CD4-CD8+TCRalphabeta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism.


Experimental Biology and Medicine | 2009

Dysregulation of T-cell development in adrenal glucocorticoid-deprived rats.

Zorica Stojić-Vukanić; Aleksandra Rauški; Duško Kosec; Katarina Radojević; Ivan Pilipović; Gordana Leposavić

A number of different experimental approaches have been used to elucidate the impact of basal levels of adrenal gland-derived glucocorticoids (GCs) on T cell development, and thereby T cell-mediated immune responses. However, the relevance of the adrenal GCs to T cell development is still far from clear. This study was undertaken to explore the relevance of basal levels of GCs to T cell differentiation/maturation. Eight days post-adrenalectomy in adult male rats the thymocyte yield, apoptotic and proliferative rate and the relationship amongst major thymocyte subsets, as defined by TCRαβ/CD4/CD8 expression, were examined using flow cytometry. Adrenal GC deprivation decreased thymocyte apoptosis and altered the kinetics of T cell differentiation/maturation. In the adrenalectomized rats there was increased thymic hypercellularity and an over-representation of the CD4+CD8+ double positive (DP) TCRαβlow cells entering selection, as well as increased numbers of their DP TCRαβ− immediate precursors. These changes were accompanied with under-representation of the postselected DP TCRαβhigh and the most mature CD4−CD8+ and, particularly, CD4+CD8− single positive (SP) TCRαβhigh cells. This data suggests that withdrawal of adrenal GCs produces alterations in the thymocyte selection processes, possibly affecting the diversity of functional T cell repertoire and generation of potentially self-reactive cells as indicated by the reduced proportion and number of CD4−CD8− double negative TCRαβhigh cells. In addition, it indicates that GCs influence the post-selection maturation of thymocytes and plays a regulatory role in controlling the ratio of mature CD4+CD8−/CD4−CD8+ SP TCRαβhigh cells.


Brain Behavior and Immunity | 2015

Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: Sexual dimorphism and diergism at the spinal cord level

Mirjana Nacka-Aleksić; Jasmina Djikić; Ivan Pilipović; Zorica Stojić-Vukanić; Duško Kosec; Biljana Bufan; Nevena Arsenović-Ranin; Mirjana Dimitrijević; Gordana Leposavić

Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freunds adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.


Journal of Neuroimmunology | 2015

Age-related changes in spleen of Dark Agouti rats immunized for experimental autoimmune encephalomyelitis.

Jasmina Djikić; Mirjana Nacka-Aleksić; Ivan Pilipović; Duško Kosec; Nevena Arsenović-Ranin; Zorica Stojić-Vukanić; Mirjana Dimitrijević; Gordana Leposavić

The study was undertaken considering age-related changes in susceptibility to experimental autoimmune encephalomyelitis (EAE) and a putative role of spleen in pathogenesis of this disease. The phenotypic and functional characteristics of T splenocytes were examined in young (3-month-old), middle-aged (8-month-old) and aged (26-month-old) Dark Agouti rats immunized for EAE with rat spinal cord in complete Freunds adjuvant. The rat susceptibility to EAE induction, as well as the number of activated CD4+CD134+ lymphocytes retrieved from their spinal cords progressively decreased with aging. To the contrary, in rats immunized for EAE the number of activated CD4+ splenocytes, i.e., CD4+CD134+, CD4+CD25+FoxP3- and CD4+CD40L+ cells, progressively increased with aging. This was associated with age-related increase in (i) CD4+ splenocyte surface expression of CD44, the molecule suggested to be involved in limiting emigration of encephalitogenic CD4+ cells from spleen into blood and (ii) frequency of regulatory T cells, including CD4+CD25+FoxP3+ cells, which are also shown to control encephalitogenic cell migration from spleen into the central nervous system. In favor of expansion of T-regulatory cell pool in aged rats was the greater concentration of IL-10 in unstimulated, Concanavalin A (ConA)- and myelin basic protein (MBP)-stimulated splenocyte cultures from aged rats compared with the corresponding cultures from young ones. Consistent with the age-related increase in the expression of CD44, which is shown to favor Th1 effector cell survival by interfering with CD95-mediated signaling, the frequency of apoptotic cells among CD4+ splenocytes, despite the greater frequency of CD95+ cells, was diminished in splenocyte cultures from aged compared with young rats. In addition, in control, as well as in ConA- and MBP-stimulated splenocyte cultures from aged rats, despite of impaired CD4+ cell proliferation, IFN-γ concentrations were greater than in corresponding cultures from young rats. This most likely reflected increased abundance of IFN-γ-producing cells in splenocyte cultures from aged compared with young rats. The diminished CD4+ cell proliferation in response to ConA and MBP in splenocyte cultures from aged compared with young rats could be, at least partly, associated with an enhanced splenic expression of iNOS mRNA in aged rats. Thus, the study suggests that age-associated changes leading to entrapping of activated CD4+ cells in the spleen could contribute to the restriction in development of EAE in aged rats.


Immunobiology | 2013

Role of ovarian hormones in T-cell homeostasis: from the thymus to the periphery.

Milica Perišić; Zorica Stojić-Vukanić; Ivan Pilipović; Duško Kosec; Mirjana Nacka-Aleksić; Jasmina Đikić; Nevena Arsenović-Ranin; Gordana Leposavić

The study explored the putative role of ovarian hormones in the peripubertal remodelling of peripheral T-cell compartment. Ovariectomy at age of 1 month enhanced the peripubertal rise in CD4+ and CD8+ cell numbers in peripheral blood (PB) and spleen from 2-month-old rats. This reflected maintenance of thymopoietic efficiency at the prepubertal level (judging by numbers of the most mature CD4+ and CD8+ thymocytes and recent thymic emigrants) and alterations in T-cell survival/proliferation in the periphery. Compared with age-matched controls, the frequency of apoptotic cells among CD8+ peripheral blood lymphocytes (PBLs) and CD4+ and CD8+ splenocytes was diminished in ovariectomized (Ox) rats, at least partly, due to lower CD95 surface density. The diminished frequency of the apoptotic T splenocytes could also be associated with the rise in the amount of splenic IL-7 mRNA. Additionally, the latter finding was consistent with the augmented proliferation of CD4+ and CD8+ splenocytes. However, the enhanced proliferation of these cells could also be linked to the rise in IL-2 receptor surface density. This increase was related to the enhanced splenic TNF-α mRNA expression. Additionally, ovariectomy led to the phenotypic alterations in the major PBL and splenic T-cell subsets by diminishing/preventing the peripubertal changes in the frequency of cells at distinct stages of post-thymic differentiation/maturation (recent thymic emigrants, mature naïve and memory cells), and by decreasing the frequency of NKT cells within peripheral CD8+ subsets. In addition to numerical and phenotypic changes in T-cell compartment (due to the lack of ovarian hormone action at both the thymic and peripheral level), Ox rats exhibited a much larger delayed-type hypersensitivity (DTH) response compared with age-matched controls. This suggested the augmented T-cell-mediated immune response in Ox rats compared with aged-matched controls.


Biogerontology | 2013

Aging affects AO rat splenic conventional dendritic cell subset composition, cytokine synthesis and T-helper polarizing capacity

Zorica Stojić-Vukanić; Biljana Bufan; Nevena Arsenović-Ranin; Duško Kosec; Ivan Pilipović; Milica Perišić Nanut; Gordana Leposavić

It is well-established that almost all cellular components of innate and adaptive immunity undergo age-related remodelling. The findings on age-related changes in both human and mouse dendritic cells (DCs) are conflicting, whereas there are no data on the influence of aging on rat DCs. In an attempt to fill this gap, freshly isolated splenic DCs expressing CD103 (αOX-62 integrin), a DC specific marker recognized by MRC OX62 monoclonal antibody, from 3- (young) and 26-month-old (aged) Albino Oxford rats were examined for subset composition, expression of activation/differentiation markers (CD80, CD86 and CD40 and MHC II molecules) and endocytic capacity using flow cytometric analysis (FCA). In addition, splenic OX62+ DCs cultured in the presence or absence of LPS were analysed for the activation marker and TNF-α, IL-6, IL-12, IL-23, TGF-β1, IL-10 expression using FCA, RT-PCR and ELISA, respectively. Moreover, the allostimulatory capacity of OX62+ DCs and IFN-γ, IL-4 and IL-17 production by CD4+ T cells in mixed leukocyte reaction was quantified using FCA and ELISA, respectively. It was found that aging: i) shifts the CD4+:CD4− subset ratio in the OX62+ DCs population towards the CD4− subset and ii) influences DCs maturation (judging by activation marker expression and efficiency of endocytosis) by affecting the expression of intrinsic (TNF-α and IL-10) and extrinsic maturation regulators. Furthermore, in LPS-matured OX62+ DCs from aged rats expression of TNF-α, IL-12, IL-23 and IL-6 was increased, whereas that of IL-10 was diminished compared with the corresponding cells from young rats. Moreover, in MLR, OX62+ DCs from aged rats exhibited enhanced Th1/Th17 driving force and diminished allostimulatory capacity compared with those from young rats.

Collaboration


Dive into the Zorica Stojić-Vukanić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge