Zorka Saleeby
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zorka Saleeby.
Tectonics | 2009
Gweltaz Mahéo; Jason B. Saleeby; Zorka Saleeby; Kenneth A. Farley
In this study we integrate the apatite (U-Th)/He thermochronometric technique with geomorphic, structural, and stratigraphic studies to pursue the origin and evolution of topographic relief related to extensive late Cenozoic faulting in the southern Sierra Nevada. The geomorphology of this region reflects a transition from a vast region to the north characterized by nonequilibrium fluvial modification of a relict low-relief landscape, little affected by internal deformation, to a more complex landscape affected by numerous faults. Regionally, the relict landscape surface is readily resolved by age-elevation relationships of apatite He ages coupled to geomorphology. These relationships can be extended into the study area and used as a structural datum for the resolution of fault offsets and related tilting. On the basis of 63 new apatite He ages and stratigraphic data from proximal parts of the San Joaquin basin we resolve two sets of normal faults oriented approximately N–S and approximately NW. Quaternary west-side-up normal faulting along the N–S Breckenridge–Kern Canyon zone has resulted in a southwest step over from the Owens Valley system in the controlling structure on the regional west tilt of Sierran basement. This zone has also served as a transfer structure partitioning Neogene-Quaternary extension resulting from normal displacements on the NW fault set. This fault system for the most part nucleated along Late Cretaceous structures with late Cenozoic remobilization representing passive extension by oblate flattening as the region rose and stretched in response to the passage of a slab window and the ensuing delamination of the mantle lithosphere from beneath the region.
Geosphere | 2012
Jason B. Saleeby; L. Le Pourhiet; Zorka Saleeby; Michael Gurnis
The putative Pliocene–Quaternary removal of mantle lithosphere from beneath the southern Sierra Nevada region (California, USA) is investigated by the iteration of thermal-mechanical models that incorporate and are tested against a range of data that are geologically observable, including rock uplift and basin subsidence data, structural and compositional data on crustal architecture, and a synthesis of seismic data that image lower crust–upper mantle structure of the region. The primary focus is testing model results with rock uplift and basin subsidence data. The initial state of our models recognizes that (1) the sub–Sierra Nevada batholith mantle lithosphere, including a substantial thickness of eclogitic cumulates that were produced during high magma flux arc activity, termed arclogite, was cooled to a conductive geotherm by amagmatic flat slab subduction at the end of the Cretaceous; and (2) the gravitationally metastable mantle lithosphere was thermally mobilized from beneath in the Neogene by the opening of an underlying slab window. Based on a detailed synthesis of appropriate rheologies of the multiphase system, a preferred class of models correctly predicts (1) the ca. 10 Ma inception of the Sierra Nevada microplate due to a lithospheric separation event along the eastern Sierra Nevada region as a result of the mobilization of the mantle lithosphere as a Rayleigh-Taylor instability; and (2) the subsequent delamination of the arclogite root of the Sierra Nevada batholith that appears to be in progress. Our preferred model also predicts focused rock uplift and basin subsidence resulting from delamination, both of which are anomalous to uplift and subsidence patterns of all other regions of the microplate. The rheology of the Great Valley crust is found to control rock uplift patterns across the Sierra Nevada, and tectonic subsidence in the Tulare Basin of the Great Valley. The Tulare Basin is uniquely situated over the region where the principal residual arclogite root remains attached to batholithic crust. The anomalous rock uplift and tectonic subsidence data are best satisfied by modeling a bulk rheology for the Great Valley crust that is similar to that of the Sierra Nevada batholith. These results are consistent with a recent synthesis of basement core and geophysical data showing that much of the Great Valley basement consists of the western Early Cretaceous zones of the Sierra Nevada batholith. The existence of this batholithic domain within the Great Valley subsurface is also in agreement with recent seismic data that resolve additional residual arclogite root materials along the base of the crust of this region.
International Geology Review | 2009
Jason B. Saleeby; Zorka Saleeby; Elisabeth S. Nadin; Gweltaz Mahéo
The Sierra Nevada and Great Valley are coupled, and behave as a semi-rigid microplate. The microplate formed as it was calved off the western edge of the Nevadaplano in the late Miocene, at which time westward regional tilting began. Tilting is controlled by west-side-up normal faulting primarily along the eastern Sierra escarpment system. Uplift and exhumation along the eastern Sierra are balanced by subsidence and sedimentation along the western Great Valley. The west tilt of the microplate is expressed by the west slope of a regional relict landscape surface that developed across much of the Sierra Nevada basement, and by the westward continuation of the surface as the basal Eocene nonconformity of the west-dipping Great Valley Tertiary section. The rigid behaviour of the microplate breaks down along its southern ∼100–150 km segment as expressed by seismicity, pervasive faulting and the development of a deep marine basin, the San Joaquin Basin (SJB), whose facies and palaeogeographic patterns diverge from regional patterns of the rest of the Great Valley. The disrupted state of the southern segment of the microplate resulted from its Late Cretaceous position above a regional lateral ramp in the underlying Franciscan-related subduction megathrust. The Kern Canyon fault system began its polyphase history as a complex oblique dextral shear zone above the megathrust lateral ramp. It was remobilized in the Neogene as an oblique transfer structure partitioning differential extension between the southern Sierra Nevada and the SJB. In Quaternary time, the Kern Canyon zone was again remobilized as a west-side-up normal fault system whose geomorphic and structural expressions are best developed south of ∼36.4° N. This normal fault system controls the west tilt of the relict landscape surface in the southern Sierra region, as well as the west dip pattern in the strata of the adjacent SJB. To the east of the Kern Canyon normal fault system, the relict landscape surface slopes continuously southwards from the high eastern Sierra into a low-lying, multiply extended terrane. Thus, from ∼36.4° N southwards, the west tilt along the western Sierra and the west dip of the adjacent Great Valley strata are controlled by the Kern Canyon system. Fresh normal scarps along the eastern Sierra escarpment system become more subdued and ultimately die out southwards from ∼36.4° N. Thus, currently, the controlling structure for the west tilt of the microplate steps westwards in the south from the eastern escarpment system over to the Kern Canyon system.
Geosphere | 2013
Jason B. Saleeby; Zorka Saleeby; L. Le Pourhiet
We investigate the putative Pliocene–Quaternary removal of mantle lithosphere from beneath the southern Sierra Nevada region using a synthesis of subsidence data from the Great Valley, and geomorphic relations across the Sierra Nevada. These findings are used to test the results and predictions of thermomechanical modeling of the lithosphere removal process that is specific to the Sierra Nevada, as presented in an accompanying paper referenced here as Part I. Our most successful thermomechanical model and the observational data that it explains are further bundled into an integrated physiographic evolution–geodynamic model for the three-dimensional epeirogenic deformation field that has affected mainly the southern Sierra Nevada–San Joaquin Basin region as a result of underlying mantle lithosphere removal. The coupled Sierra Nevada mountain range and Great Valley basin are recognized as a relatively rigid block (Sierra Nevada microplate) moving within the San Andreas–Walker Lane dextral plate juncture system. Our analysis recognizes that the Sierra Nevada possessed kilometer-scale local and regional paleotopographic relief, and that the Great Valley forearc basin possessed comparable structural relief on its principal stratigraphic horizons, both dating back to the end of Cretaceous time. Such ancient paleorelief must be accounted for in considering late Cenozoic components of uplift and subsidence across the microplate. We further recognize that Cenozoic rock and surface uplift must be considered from the perspectives of both local epeirogeny driven by mantle lithosphere removal, and regional far-field–forced epeirogeny driven by plate tectonics and regional upper-mantle buoyancy structure. Stratigraphic relations of Upper Cretaceous and lower Cenozoic marine strata lying on northern and southern Sierra Nevada basement provide evidence for near kilometer-scale rock uplift in the Cenozoic. Such uplift is likely to have possessed positive, and then superposed negative (subsidence) stages of relief generation, rendering net regional rock and surface uplift. Accounting for ancient paleorelief and far-field–driven regional uplift leaves a residual pattern whereby ∼1200 m of southeastern Sierra crest rock and similar surface uplift, and ∼700 m of spatially and temporally linked tectonic subsidence in the southern Great Valley were required in the late Cenozoic by mantle lithosphere removal. These values are close to the predictions of our modeling, but application of the model results to the observed geology is complicated by spatial and temporal variations in the regional tectonics that probably instigated mantle lithosphere removal, as well as spatial and temporal variations in the observed uplift and subsidence patterns. Considerable focus is given to these spatial-temporal variation patterns, which are interpreted to reflect a complex three-dimensional pattern resulting from the progressive removal of mantle lithosphere from beneath the region, as well as its epeirogenic expressions. The most significant factor is strong evidence that mantle lithosphere removal was first driven by an east-to-west pattern of delamination in late Miocene–Pliocene time, and then rapidly transitioned to a south-to-north pattern of delamination in the Quaternary.
Geosphere | 2014
M. Robinson Cecil; Zorka Saleeby; Jason B. Saleeby; Kenneth A. Farley
Thermomechanical models of mantle lithosphere removal from beneath the southern Sierra Nevada region, California (USA), predict a complex spatiotemporal pattern of vertical surface displacements. We evaluate these models by using (U-Th)/He thermochronometry, together with other paleothermometry estimates, to investigate such topographic transients. We target Tertiary strata from the Kern arch, a crescent-shaped active uplift located in the southeastern San Joaquin Basin, along the western flank of the southern Sierra Nevada. Kern arch stratigraphy provides a unique record of subsidence and exhumation in a sensitive region immediately adjacent to the delaminating mantle lithosphere at depth. Detrital apatite (U-Th)/He ages from Oligocene–Miocene sandstones collected in Kern arch well cores indicate postdepositional heating to temperatures beyond those corresponding with their present burial depths. When integrated with available geologic and stratigraphic constraints, temperature-time modeling of thermochronometric data suggests partial He loss from apatites at temperatures of 70–90 °C, followed by exhumation to present burial temperatures of 35–60 °C since ca. 6 Ma. By constraining the late Cenozoic geothermal gradient to ∼25 °C/km, our results imply 1.0–1.6 km of rapid (∼0.4 mm/yr) subsidence and sedimentation, and then subsequent uplift and exhumation of southeastern San Joaquin Basin strata in latest Miocene–Quaternary time. Stratigraphic and geomorphic relations further constrain the principal burial episode to ca. 2.5 Ma or later, and exhumation to ca. 1 Ma or later. Subtle differences in the maximum temperatures achieved in various wells may reflect differing degrees of tectonic subsidence and sedimentation as a function of growth faulting and distance from the range front. Our results are consistent with estimates of surface subsidence and uplift from Sierran delamination models, which predict a minimum of ∼0.7 km of tectonic subsidence in regions retaining mantle lithosphere adjacent to the area of delamination, and a minimum of ∼0.8 km of rock uplift in regions where delamination occurred recently. We attribute the marked pulse of tectonic subsidence in the San Joaquin Basin to viscous coupling between the lower crust and a downwelling mass in the delaminating slab. The ensuing episode of exhumation is interpreted to result from the northwestward peeling back of the slab and the associated replacement of dense lithosphere with buoyant asthenosphere that drove rapid rock and surface uplift.
Geosphere | 2016
Jason B. Saleeby; Zorka Saleeby; Jason Robbins; Janice M. Gillespie
We have studied detrital-zircon U-Pb age spectra and conglomerate clast populations from Neogene–Quaternary siliciclastic and volcaniclastic strata of the southeastern San Joaquin Basin, as well as a fault-controlled Neogene basin that formed across the southernmost Sierra Nevada; we call this basin the Walker graben. The age spectra of the detrital-zircon populations are compared to a large basement zircon age data set that is organized into age populations based on major drainage basin geometry of the southern Sierra Nevada and adjacent ranges. We find a direct sediment provenance and dispersal link for much of the Neogene between the Walker graben and the southeastern San Joaquin Basin. In early to middle Miocene time, this link was accented by the delivery of volcaniclastic materials into the southeastern Basin margin from the Cache Peak volcanic center that was nested within the Walker graben. In late middle Miocene through early Pleistocene time, this linkage was maintained by a major fluvial system that we call the Caliente River, whose lower trunk was structurally controlled by growth faults along the Edison graben, which breached the western wall of the Walker graben. The Caliente River redistributed into the southeastern San Joaquin Basin much of the ∼2 km of volcaniclastic and siliciclastic strata that filled the Walker graben. This sediment redistribution was forced by a regional topographic gradient that developed in response to uplift along the eastern Sierra escarpment system. The Caliente River built a fluvial-deltaic fan system that prograded northwestward across the lower trunk of the Kern River and thereby deflected the Kern drainage flux of sediment into the Basin edge northward. In mainly late Miocene time, turbidites generated primarily off the Caliente River delta front built the Stevens submarine fan system of the southeastern and central areas of the San Joaquin Basin. In late Quaternary time, 1–1.8 km of Caliente River–built strata were eroded as an epeirogenic uplift that we call the Kern arch emerged along the southeastern Basin margin, in response to underlying mantle lithosphere removal. The sediment that was eroded off the arch was redistributed mainly into the Maricopa and Tulare sub-basins that are located to the southwest and northwest, respectively, of the arch.
Archive | 2010
Jason B. Saleeby; Zorka Saleeby; Lijun Liu; Gweltaz Mahéo
Field Guides | 2013
Jason B. Saleeby; Zorka Saleeby; Frank Sousa
112th Annual GSA Cordilleran Section Meeting | 2016
Jason B. Saleeby; Zorka Saleeby
Archive | 2009
Jason B. Saleeby; Zorka Saleeby; Alan D. Chapman; Elisabeth S. Nadin