Zouher Amzil
IFREMER
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zouher Amzil.
Marine Drugs | 2012
Zouher Amzil; Manoella Sibat; Nicolas Chomérat; Hubert Grossel; Françoise Marco-Miralles; Rodolphe Lemée; Elisabeth Nézan; Véronique Séchet
Dinoflagellates of the genus Ostreopsis are known to cause (often fatal) food poisoning in tropical coastal areas following the accumulation of palytoxin (PLTX) and/or its analogues (PLTX group) in crabs, sea urchins or fish. Ostreopsis spp. occurrence is presently increasing in the northern to north western Mediterranean Sea (Italy, Spain, Greece and France), probably in response to climate change. In France, Ostreopsis. cf. ovata has been associated with toxic events during summer 2006, at Morgiret, off the coast of Marseille, and a specific monitoring has been designed and implemented since 2007. Results from 2008 and 2009 showed that there is a real danger of human poisoning, as these demonstrated bioaccumulation of the PLTX group (PLTX and ovatoxin-a) in both filter-feeding bivalve molluscs (mussels) and herbivorous echinoderms (sea urchins). The total content accumulated in urchins reached 450 µg PLTX eq/kg total flesh (summer 2008). In mussels, the maximum was 230 µg eq PLTX/kg (summer 2009) compared with a maximum of 360 µg found in sea urchins during the same period at the same site. This publication brings together scientific knowledge obtained about the summer development of Ostreopsis spp. in France during 2007, 2008 and 2009.
Toxicon | 2001
Zouher Amzil; Jaqueline Fresnel; Dominique Le Gal; Chantal Billard
Within the French phytoplankton monitoring network (REPHY), domoic acid (DA), the toxin responsible for amnesic shellfish poisoning, was first detected in samples collected in 1998. Toxin analysis by the official method [liquid chromatography with diode array detection (LC/DAD)] was performed when Pseudo-nitzschia cell concentration was greater than 1.0 x 10(5) cells/l. LC/DAD results obtained in 1999 and 2000 showed increased DA accumulation in bivalves sampled at different sites along French coasts. The toxin maximum in 1999 was 3.2 microg DA/g of whole tissue, whereas the levels in 2000 (53 microg) were above the sanitary threshold (20 microg DA/g tissue). Phytoplankton samples collected during blooms were observed by both light and scanning electron microscopy (SEM). Identification of phytoplankton species by SEM analyses confirmed the presence of two known DA-producing species, P. pseudodelicatissima and P. multiseries. LC/DAD results for a mass culture of P. multiseries indicated that this species was involved in DA accumulation in French shellfish.
Marine Drugs | 2011
Anne Sophie Kerbrat; Zouher Amzil; Ralph Pawlowiez; Stjepko Golubic; Manoella Sibat; Hélène Taiana Darius; Mireille Chinain; Dominique Laurent
Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales) are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed.
Toxicon | 2008
Zouher Amzil; Manoella Sibat; Florence Royer; Veronique Savar
The French Phytoplankton and Phycotoxins monitoring network (REPHY) recently found positive or dubious negative shellfish samples using lipophilic toxins mouse bioassay. These samples were analyzed by liquid chromatography (LC) in combination with mass spectrometry (MS) to detect the following toxins: okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), azaspiracids (AZAs), yessotoxins (YTXs), spirolides (SPXs) and gymnodimines (GYMs). Over the 2006-2007 period, chemical analyses revealed various lipophilic toxin profiles according to shellfish sampling locations. In addition to OA and/or PTX-2 and their derivatives, several other compounds were found for the first time in France: (1) during the summer of 2006, AZA-1 and AZA-2 in Queen scallops (Aequipecten opercularis) from Northern Brittany; (2) during the summer of 2007, YTX and its major metabolites (45-hydroxy-YTX, homo-YTX, carboxy-YTX) in shellfish from the Mediterranean coast. Regarding YTX-group, the toxin profiles evolution in mussels during summer showed that: (i) the carboxy-YTX depuration rate was much slower than the YTX and 45-hydroxy-YTX ones; (ii) the homo-YTX concentration, which was initially very weak, increased significantly during the last depuration phase, which seems to reveal a YTX-group high metabolisation level in mussels. This paper reports for the first time on AZA and YTX-groups detection in French shellfish.
Toxicon | 2013
Philipp Hess; Eric Abadie; Fabienne Hervé; Tom Berteaux; Véronique Séchet; Rómulo Aráoz; Jordi Molgó; Armen Zakarian; Manoella Sibat; Thomas Rundberget; Christopher O. Miles; Zouher Amzil
Following a review of official control data on shellfish in France, Ingril Lagoon had been identified as a site where positive mouse bioassays for lipophilic toxins had been repeatedly observed. These unexplained mouse bioassays, also called atypical toxicity, coincided with an absence of regulated toxins and rapid death times in mice observed in the assay. The present study describes pinnatoxin G as the main compound responsible for the toxicity observed using the mouse bioassay for lipophilic toxins. Using a well-characterised standard for pinnatoxin G, LC-MS/MS analysis of mussel samples collected from 2009 to 2012 revealed regular occurrences of pinnatoxin G at levels sufficient to account for the toxicity in the mouse bioassays. Baseline levels of pinnatoxin G from May to October usually exceeded 40 μg kg(-1) in whole flesh, with a maximum in September 2010 of around 1200 μg kg(-1). These concentrations were much greater than those at the other 10 sites selected for vigilance testing, where concentrations did not exceed 10 μg kg(-1) in a 3-month survey from April to July 2010, and where rapid mouse deaths were not typically observed. Mussels were always more contaminated than clams, confirming that mussel is a good sentinel species for pinnatoxins. Profiles in mussels and clams were similar, with the concentration of pinnatoxin A less than 2% that of pinnatoxin G, and pteriatoxins were only present in non-quantifiable traces. Esters of pinnatoxin G could not be detected by analysis of extracts before and after alkaline hydrolysis. Analysis with a receptor-binding assay showed that natural pinnatoxin G was similarly active on the nicotinic acetylcholine receptor as chemically synthesized pinnatoxin G. Culture of Vulcanodinium rugosum, previously isolated from Ingril lagoon, confirmed that this alga is a pinnatoxin G producer (4.7 pg cell(-1)). Absence of this organism from the water column during prolonged periods of shellfish contamination and the dominance of non-motile life stages of V. rugosum both suggest that further studies will be required to fully describe the ecology of this organism and the accumulation of pinnatoxins in shellfish.
Marine Drugs | 2014
Charline Brissard; Christine Herrenknecht; Véronique Séchet; Fabienne Hervé; Francesco Pisapia; Jocelyn Harcouet; Rodolphe Lémée; Nicolas Chomérat; Philipp Hess; Zouher Amzil
Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg−1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg−1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell−1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.
Journal of Chromatography A | 2015
Charline Brissard; Fabienne Hervé; Manoella Sibat; Véronique Séchet; Philipp Hess; Zouher Amzil; Christine Herrenknecht
The presence of Ostreopsis cf. ovata on the Mediterranean coast represents a serious concern to human health due to production of toxins - putative palytoxin and ovatoxins (ovatoxin-a, -b, -c, -d, -e, -f and -g). However, purified ovatoxins are not widely available and their toxicities are still unknown. In the present study, we report on HR LC-MS/MS analysis of a French O. cf. ovata strain (IFR-OST-0.3V) collected at Villefranche-sur-Mer (France) during a bloom in 2011. Investigation of this strain of O. cf. ovata cultivated in our laboratory by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) confirmed the production of ovatoxins-a to -e and revealed the presence of a new ovatoxin analog, named ovatoxin-h. O. cf. ovata extracts were pre-purified by Sephadex LH-20 to obtain a concentrated fraction of ovatoxins (OVTXs). This method provided a recovery of about 85% of OVTXs and a cleanup efficiency of 93%. Different stationary phases were tested with this fraction of interest to elucidate the structure of the new OVTX congener and to obtain purified ovatoxins. Eight reversed phase sorbents were evaluated for their capacity to separate and purify ovatoxins. Among them Kinetex C18, Kinetex PFP and Uptisphere C18-TF allowed for best separations almost achieving baseline resolution. Kinetex C18 is able to sufficiently separate these toxins, allowing us to identify the toxins present in the extract purified by Sephadex LH-20, and to partly elucidate the structure of the new ovatoxin congener. This toxin possesses one oxygen atom less and two hydrogens more than ovatoxin-a. Investigations using liquid chromatography coupled to high resolution tandem mass spectrometry suggest that the part of the molecule where ovatoxin-h differs from ovatoxin-a is situated between C42 and C49. Uptisphere C18-TF was proposed as a first step preparative chromatography as it is able to separate a higher number of ovatoxins (especially ovatoxin-d and ovatoxin-e) and because it separates ovatoxins from unknown compounds, identified using full scan single quadrupole mass spectrometry. After pre-purification with Sephadex LH-20, purification and separation of individual ovatoxins was attempted using an Uptisphere C18-TF column. During recovery of purified toxins, problems of stability of OVTXs were observed, leading us to investigate experimental conditions responsible for this degradation.
Marine Drugs | 2014
Damien Réveillon; Eric Abadie; Véronique Séchet; Luc Brient; Veronique Savar; Philipp Hess; Zouher Amzil
β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA.
Journal of Chromatography A | 2015
Zita Zendong; Pearse McCarron; Christine Herrenknecht; Manoella Sibat; Zouher Amzil; Richard B. Cole; Philipp Hess
Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No. 15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analyzed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterized toxins.
Marine Drugs | 2013
Mohamed Laabir; Yves Collos; Estelle Masseret; Daniel Grzebyk; Eric Abadie; Veronique Savar; Manoella Sibat; Zouher Amzil
Laboratory experiments were designed to study the toxin content and profile of the Alexandrium catenella strain ACT03 (isolated from Thau Lagoon, French Mediterranean) in response to abiotic environmental factors under nutrient-replete conditions. This dinoflagellate can produce various paralytic shellfish toxins with concentrations ranging from 2.9 to 50.3 fmol/cell. The toxin profile was characterized by carbamate toxins (GTX3, GTX4 and GTX5) and N-sulfocarbamoyl toxins (C1, C2, C3 and C4). C2 dominated at 12–18 °C, but only for salinities ranging from 10 to 25 psu, whereas GTX5 became dominant at temperatures ranging from 21 to 30 °C at almost all salinities. There was no significant variation in the cellular toxin amount from 18 °C to 27 °C for salinities ranging between 30 and 40 psu. At salinities of 10 to 25 psu, the toxin concentrations always remained below 20 fmol/cell. Toxin content was stable for irradiance ranging from 10 to 70 μmol photons/m2/s then slightly increased. Overall, the toxin profile was more stable than the toxin content (fmol/cell), except for temperature and/or salinity values different from those recorded during Alexandrium blooms in Thau Lagoon.