Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsofia Szentpetery is active.

Publication


Featured researches published by Zsofia Szentpetery.


Journal of Biological Chemistry | 2009

Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides

Marek K. Korzeniowski; Marko A. Popovic; Zsofia Szentpetery; Péter Várnai; Stanko S. Stojilkovic; Tamas Balla

Recent studies identified two main components of store-operated calcium entry (SOCE): the endoplasmic reticulum-localized Ca2+ sensor protein, STIM1, and the plasma membrane (PM)-localized Ca2+ channel, Orai1/CRACM1. In the present study, we investigated the phosphoinositide dependence of Orai1 channel activation in the PM and of STIM1 movements from the tubular to PM-adjacent endoplasmic reticulum regions during Ca2+ store depletion. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) levels were changed either with agonist stimulation or by chemically induced recruitment of a phosphoinositide 5-phosphatase domain to the PM, whereas PtdIns4P levels were decreased by inhibition or down-regulation of phosphatidylinositol 4-kinases (PI4Ks). Agonist-induced phospholipase C activation and PI4K inhibition, but not isolated PtdIns(4,5)P2 depletion, substantially reduced endogenous or STIM1/Orai1-mediated SOCE without preventing STIM1 movements toward the PM upon Ca2+ store depletion. Patch clamp analysis of cells overexpressing STIM1 and Orai1 proteins confirmed that phospholipase C activation or PI4K inhibition greatly reduced ICRAC currents. These results suggest an inositide requirement of Orai1 activation but not STIM1 movements and indicate that PtdIns4P rather than PtdIns(4,5)P2 is a likely determinant of Orai1 channel activity.


Physiology | 2009

Phosphoinositide Signaling: New Tools and Insights

Tamas Balla; Zsofia Szentpetery; Yeun Ju Kim

Phosphoinositides constitute only a small fraction of cellular phospholipids, yet their importance in the regulation of cellular functions can hardly be overstated. The rapid metabolic response of phosphoinositides after stimulation of certain cell surface receptors was the first indication that these lipids could serve as regulatory molecules. These early observations opened research areas that ultimately clarified the plasma membrane role of phosphoinositides in Ca(2+) signaling. However, research of the last 10 years has revealed a much broader range of processes dependent on phosphoinositides. These lipids control organelle biology by regulating vesicular trafficking, and they modulate lipid distribution and metabolism more generally via their close relationship with lipid transfer proteins. Phosphoinositides also regulate ion channels, pumps, and transporters as well as both endocytic and exocytic processes. The significance of phosphoinositides found within the nucleus is still poorly understood, and a whole new research concerns the highly phosphorylated inositols that also appear to control multiple nuclear processes. The expansion of research and interest in phosphoinositides naturally created a demand for new approaches to determine where, within the cell, these lipids exert their effects. Imaging of phosphoinositide dynamics within live cells has become a standard cell biological method. These new tools not only helped us localize phosphoinositides within the cell but also taught us how tightly phosphoinositide control can be linked with distinct effector protein complexes. The recent progress allows us to understand the underlying causes of certain human diseases and design new strategies for therapeutic interventions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling

Zsofia Szentpetery; Péter Várnai; Tamas Balla

Phosphoinositides are essential lipid regulators of trafficking and signaling pathways of all eukaryotic cells. Phosphatidylinositol 4-phosphate (PtdIns4P) is an intermediate in the synthesis of several important phosphoinositide species but also serves as a regulatory molecule in its own right. Phosphatidylinositol 4-kinases are most abundant in the Golgi but are also found in the plasma membrane and in endocytic compartments. To investigate the role of Golgi PtdIns4P in orchestrating trafficking events, we used a unique drug-inducible molecular approach to rapidly deplete PtdIns4P from Golgi membranes by a recruitable Sac1 phosphatase enzyme. The utility of the system was shown by the rapid loss of Golgi localization of PH domains known to bind PtdIns4P after Sac1 recruitment to the Golgi. Acute PtdIns4P depletion prevented the exit of cargo from the Golgi destined to both the plasma membrane and the late endosomes and led to the loss of some but not all clathrin adaptors from the Golgi membrane. Rapid PtdIns4P depletion in the Golgi also impaired but did not eliminate the replenishment of the plasma membrane PtdIns(4,5)P2 during phospholipase C activation revealing a hitherto unrecognized contribution of Golgi PtdIns4P to this process. This unique approach will allow further studies on the role of phosphoinositides in endocytic compartments that have evaded detection using the conventional long-term manipulations of inositide kinase and phosphatase activities.


Journal of Cell Biology | 2009

Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis.

Gordon Polevoy; Ho-Chun Wei; Raymond Wong; Zsofia Szentpetery; Yeun Ju Kim; Philip Goldbach; Sarah K. Steinbach; Tamas Balla; Julie A. Brill

Fwd shuttles Rab11 to the cleavage furrow by both kinase-dependent and -independent mechanisms.


BMC Cell Biology | 2009

Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study

Zsofia Szentpetery; András Balla; Yeun Ju Kim; Mark A. Lemmon; Tamas Balla

BackgroundPhosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a critically important regulatory phospholipid found in the plasma membrane of all eukaryotic cells. In addition to being a precursor of important second messengers, PtdIns(4,5)P2 also regulates ion channels and transporters and serves the endocytic machinery by recruiting clathrin adaptor proteins. Visualization of the localization and dynamic changes in PtdIns(4,5)P2 levels in living cells is critical to understanding the biology of PtdIns(4,5)P2. This has been mostly achieved with the use of the pleckstrin homology (PH) domain of PLCδ1 fused to GFP. Here we report on a comparative analysis of several recently-described yeast PH domains as well as the mammalian Tubby domain to evaluate their usefulness as PtdIns(4,5)P2 imaging tools.ResultsAll of the yeast PH domains that have been previously shown to bind PtdIns(4,5)P2 showed plasma membrane localization but only a subset responded to manipulations of plasma membrane PtdIns(4,5)P2. None of these domains showed any advantage over the PLCδ1PH-GFP reporter and were compromised either in their expression levels, nuclear localization or by causing peculiar membrane structures. In contrast, the Tubby domain showed high membrane localization consistent with PtdIns(4,5)P2 binding and displayed no affinity for the soluble headgroup, Ins(1,4,5)P3. Detailed comparison of the Tubby and PLCδ1PH domains showed that the Tubby domain has a higher affinity for membrane PtdIns(4,5)P2 and therefore displays a lower sensitivity to report on changes of this lipid during phospholipase C activation.ConclusionThese results showed that both the PLCδ1PH-GFP and the GFP-Tubby domain are useful reporters of PtdIns(4,5)P2 changes in the plasma membrane, with distinct advantages and disadvantages. While the PLCδ1PH-GFP is a more sensitive reporter, its Ins(1,4,5)P3 binding may compromise its accuracy to measure PtdIns(4,5)P2changes. The Tubby domain is more accurate to report on PtdIns(4,5)P2 but its higher affinity and lower sensitivity may limit its utility when phospholipase C activation is only moderate. These studies also demonstrated that similar changes in PtdIns(4,5)P2 levels in the plasma membrane can differentially regulate multiple effectors if they display different affinities to PtdIns(4,5)P2.


Molecular Biology of the Cell | 2012

Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase

Marko Jovic; Michelle J. Kean; Zsofia Szentpetery; Gordon Polevoy; Anne-Claude Gingras; Julie A. Brill; Tamas Balla

Trafficking of glucocerebrosidase (GBA) enzyme from the endoplasmic reticulum to the lysosome requires lysosomal integral membrane protein type 2 (LIMP-2), which is a receptor for GBA. This study shows that phosphatidylinositol 4-kinase (PI4K) type IIIβ controls the exit of LIMP-2/GBA complex from the Golgi, while PI4KIIα is required for the post-Golgi trafficking of the complex via the late endosomes.


Biochemistry | 2008

Design of drug-resistant alleles of type-III phosphatidylinositol 4-kinases using mutagenesis and molecular modeling.

András Balla; Galina Tuymetova; Balázs Tóth; Zsofia Szentpetery; Xiaohang Zhao; Zachary A. Knight; Kevan M. Shokat; Peter J. Steinbach; Tamas Balla

Molecular modeling and site directed mutagenesis were used to analyze the structural features determining the unique inhibitor sensitivities of type-III phosphatidylinositol 4-kinase enzymes (PI4Ks). Mutation of a highly conserved Tyr residue that provides the bottom of the hydrophobic pocket for ATP yielded a PI4KIIIbeta enzyme that showed greatly reduced wortmannin sensitivity and was catalytically still active. Similar substitutions were not tolerated in the type-IIIalpha enzyme rendering it catalytically inactive. Two conserved Cys residues located in the active site of PI4KIIIalpha were found responsible for the high sensitivity of this enzyme to the oxidizing agent, phenylarsine oxide. Mutation of one of these Cys residues reduced the phenylarsine oxide sensitivity of the enzyme to the same level observed with the PI4KIIIbeta protein. In search of inhibitors that would discriminate between the closely related PI4KIIIalpha and -IIIbeta enzymes, the PI3Kgamma inhibitor, PIK93, was found to inhibit PI4KIIIbeta with significantly greater potency than PI4KIIIalpha. These studies should aid development of subtype-specific inhibitors of type-III PI4Ks and help to better understand the significance of localized PtdIns4P production by the various PI4Ks isoforms in specific cellular compartments.


Journal of Biological Chemistry | 2009

A PH Domain in the Arf GTPase-activating Protein (GAP) ARAP1 Binds Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Arf GAP Activity Independently of Recruitment to the Plasma Membranes

Fanny Campa; Hye-Young Yoon; Vi Luan Ha; Zsofia Szentpetery; Tamas Balla; Paul A. Randazzo

ARAP1 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GTPase-activating protein (GAP) with five PH domains that regulates endocytic trafficking of the epidermal growth factor receptor (EGFR). Two tandem PH domains are immediately N-terminal of the Arf GAP domain, and one of these fits the consensus sequence for PtdIns(3,4,5)P3 binding. Here, we tested the hypothesis that PtdIns(3,4,5)P3-dependent recruitment mediated by the first PH domain of ARAP1 regulates the in vivo and in vitro function of ARAP1. We found that PH1 of ARAP1 specifically bound to PtdIns(3,4,5)P3, but with relatively low affinity (≈1.6 μm), and the PH domains did not mediate PtdIns(3,4,5)P3-dependent recruitment to membranes in cells. However, PtdIns(3,4,5)P3 binding to the PH domain stimulated GAP activity and was required for in vivo function of ARAP1 as a regulator of endocytic trafficking of the EGFR. Based on these results, we propose a variation on the model for the function of phosphoinositide-binding PH domains. In our model, ARAP1 is recruited to membranes independently of PtdIns(3,4,5)P3, the subsequent production of which triggers enzymatic activity.


Biochimica et Biophysica Acta | 2011

Genetic and functional studies of phosphatidyl-inositol 4-kinase type IIIα

Zsofia Szentpetery; Gergely Szakács; Naveen Bojjireddy; Andrew W. Tai; Tamas Balla

Phosphatidylinositol 4-kinase type IIIa (PI4KIIIα) is one of four mammalian PI 4-kinases that catalyzes the first committed step in polyphosphoinositide synthesis. PI4KIIIα has been linked to regulation of ER exit sites and to the synthesis of plasma membrane phosphoinositides and recent studies have also revealed its importance in replication of the Hepatitis C virus in liver. Two isoforms of the mammalian PI4KIIIα have been described and annotated in GenBank: a larger, ~230kDa (isoform 2) and a shorter splice variant containing only the ~97kDa C-terminus that includes the catalytic domain (isoform 1). However, Northern analysis of human tissues and cancer cells showed only a single transcript of ~7.5kb with the exception of the proerythroleukemia line K562, which contained significantly higher level of the 7.5kb transcript along with smaller ones of 2.4, 3.5 and 4.2kb size. Bioinformatic analysis also confirmed the high copy number of PI4KIIIα transcript in K562 cells along with several genes located in the same region in Chr22, including two pseudogenes that cover most exons coding for isoform 1, consistent with chromosome amplification. A panel of polyclonal antibodies raised against peptides within the C-terminal half of PI4KIIIα failed to detect the shorter isoform 1 either in COS-7 cells or K562 cells. Moreover, expression of a cDNA encoding isoform 1 yielded a protein of ~97kDa that showed no catalytic activity and failed to rescue hepatitis C virus replication. These data draw attention to PI4KIIIα as one of the genes found in Chr22q11, a region affected by chromosomal instability, but do not substantiate the existence of a functionally relevant short form of PI4KIIIα.


Journal of Biological Chemistry | 2013

Synergistic activation of p21-activated kinase 1 by phosphatidylinositol 4,5-bisphosphate and Rho GTPases

Kimberly A. Malecka; Zsofia Szentpetery; Jeffrey R. Peterson

Background: p21-activated kinase 1 (Pak1) is activated by Cdc42 as well as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Results: PI(4,5)P2 and Cdc42 both contribute to Pak1 membrane recruitment and synergistically activate Pak1 but not another Cdc42 effector, Ack (activated Cdc42-associated kinase). Conclusion: Pak1 is a coincidence detector regulated by GTPase and PI(4,5)P2 binding. Significance: Coincidence detection may allow for Pak1 activation independently from other Cdc42 effectors. Autoinhibited p21-activated kinase 1 (Pak1) can be activated in vitro by the plasma membrane-bound Rho GTPases Rac1 and Cdc42 as well as by the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). Activator binding is mediated by a GTPase-binding motif and an adjacent phosphoinositide-binding motif. Whether these two classes of activators play alternative, additive, or synergistic roles in Pak1 activation is unknown, as is their contributions to Pak1 activation in vivo. To address these questions, we developed a system to mimic the membrane anchoring of Rho GTPases by creating liposomes containing both PIP2 and a Ni2+-NTA modified lipid capable of binding hexahistidine-tagged Cdc42. We find that among all biologically relevant phosphoinositides, only PIP2 is able to synergistically activate Pak1 in concert with Cdc42. Membrane binding of the kinase was highly sensitive to the spatial density of PIP2 and Pak1 demonstrated dramatically enhanced affinity for Cdc42 anchored in a PIP2 environment. To validate these findings in vivo, we utilized an inducible recruitment system to drive the ectopic synthesis of PIP2 on Golgi membranes, which normally have active Cdc42 but lack significant concentrations of PIP2. Pak1 was recruited to PIP2-containing membranes in a manner dependent on the ability of Pak1 to bind to both PIP2 and Cdc42. These findings provide a mechanistic explanation for the essential role of both phosphoinositides and GTPases in Pak1 recruitment and activation. In contrast, Ack, another Cdc42 effector kinase that lacks an analogous phosphoinositide-binding motif, fails to show the same enhancement of membrane binding and activation by PIP2, thus indicating that regulation by PIP2 and Cdc42 could provide a combinatorial code for activation of different GTPase effectors in different subcellular locations.

Collaboration


Dive into the Zsofia Szentpetery's collaboration.

Top Co-Authors

Avatar

Tamas Balla

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yeun Ju Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Polevoy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Péter Várnai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Tai

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Balázs Tóth

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge