Zsolt Bagoly
Eötvös Loránd University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zsolt Bagoly.
Astronomy and Astrophysics | 2006
István T. Horváth; Lajos G. Balázs; Zsolt Bagoly; F. Ryde; A. Mészáros
Gamma-ray bursts can be divided into three groups (short, intermediate, long) with respect to their durations. This classification is somewhat imprecise, since the subgroup of intermediate duration has an admixture of both short and long bursts. In this paper a physically more reasonable definition of the intermediate group is presented, using also the hardnesses of the bursts. It is shown again that the existence of the three groups is real, no further groups are needed. The intermediate group is the softest one. From this new definition it follows that 11% of all bursts belong to this group. An anticorrelation between the hardness and the duration is found for this subclass in contrast to the short and long groups. Despite this difference it is not clear yet whether this group represents a physically different phenomenon.
Astronomy and Astrophysics | 2008
István T. Horváth; Lajos G. Balázs; Zsolt Bagoly; P. Veres
Context. Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third class. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore we reanalyze the durations and their distribution and also the classification of GRBs. Aims. We analyze the bursts duration distribution, published in The First BAT Catalog, whether it contains two, three or more groups. Methods. Using The First BAT Catalog the maximum likelihood estimation was used to analyze the duration distribution of GRBs. Results. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%). Similarly, in previous results we found that the fourth component is not needed. The relative frequencies of the distribution of the groups are 7% short 35% intermediate and 58% long. Conclusions. Similarly to the BATSE data, three components are needed to explain the BAT GRBs’ duration distribution. Although the relative frequencies of the groups are different than in the BATSE GRB sample, the difference in the instrument spectral sensitivities can explain this bias. This means theoretical models may be needed to explain three different type of gamma-ray bursts.
Astronomy and Astrophysics | 2003
Lajos G. Balázs; Zsolt Bagoly; István T. Horváth; A. Mészáros; P. Meszaros
We argue that the distributions of both the intrinsic fluence and the intrinsic duration of the γ-ray emission in gamma- ray bursts from the BATSE sample are well represented by log-normal distributions, in which the intrinsic dispersion is much larger than the cosmological time dilatation and redshift effects. We perform separate bivariate log-normal distribution fits to the BATSE short and long burst samples. The bivariate log-normal behaviour results in an ellipsoidal distribution, whose major axis determines an overall statistical relation between the fluence and the duration. We show that this fit provides evidence for a power-law dependence between the fluence and the duration, with a statistically significant different index for the long and short groups. We discuss possible biases, which might affect this result, and argue that the effect is probably real. This may provide a potentially useful constraint for models of long and short bursts.
Astronomy and Astrophysics | 2014
I. Horváth; Jon Hakkila; Zsolt Bagoly
Context. Research over the past three decades has revolutionized cosmology while supporting the standard cosmological model. However, the cosmological principle of Universal homogeneity and isotropy has always been in question, since structures as large as the survey size have always been found each time the survey size has increased. Until 2013, the largest known structure in our Universe was the Sloan Great Wall, which is more than 400 Mpc long located approximately one billion light years away. Aims. Gamma-ray bursts (GRBs) are the most energetic explosions in the Universe. As they are associated with the stellar endpoints of massive stars and are found in and near distant galaxies, they are viable indicators of the dense part of the Universe containing normal matter. The spatial distribution of GRBs can thus help expose the large scale structure of the Universe. Methods. As of July 2012, 283 GRB redshifts have been measured. Subdividing this sample into nine radial parts, each containing 31 GRBs, indicates that the GRB sample having 1.6 < z < 2. 1d iffers significantly from the others in that 14 of the 31 GRBs are concentrated in roughly 1/8 of the sky. A two-dimensional Kolmogorov-Smirnov test, a nearest-neighbour test, and a Bootstrap Point-Radius Method explore the significance of this clustering. Results. All tests used indicate that there is a statistically significant clustering of the GRB sample at 1.6 < z < 2.1. Furthermore, this angular excess cannot be entirely attributed to known selection biases, making its existence due to chance unlikely. Conclusions. This huge structure lies ten times farther away than the Sloan Great Wall, at a distance of approximately ten billion light years. The size of the structure defined by these GRBs is about 2000–3000 Mpc, or more than six times the size of the largest known object in the Universe, the Sloan Great Wall.
Monthly Notices of the Royal Astronomical Society | 2008
Roland Vavrek; Lajos G. Balázs; A. Mészáros; István T. Horváth; Zsolt Bagoly
We have studied the complete randomness of the angular distribution of gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment (BATSE). Because GRBs seem to be a mixture of objects of different physical nature, we divided the BATSE sample into five subsamples (short1, short2, intermediate, long1, long2) based on their durations and peak fluxes, and we studied the angular distributions separately. We used three methods, Voronoi tesselation, minimal spanning tree and multifractal spectra, to search for non-randomness in the subsamples. To investigate the eventual non-randomness in the subsamples, we defined 13 test variables (nine from the Voronoi tesselation, three from the minimal spanning tree and one from the multifractal spectrum). Assuming that the point patterns obtained from the BATSE subsamples are fully random, we made Monte Carlo simulations taking into account the BATSEs sky-exposure function. The Monte Carlo simulations enabled us to test the null hypothesis (i.e. that the angular distributions are fully random). We tested the randomness using a binomial test and by introducing squared Euclidean distances in the parameter space of the test variables. We concluded that the short1 and short2 groups deviate significantly (99.90 and 99.98 per cent, respectively) from the full randomness in the distribution of the squared Euclidean distances; however, this is not the case for the long samples. For the intermediate group, the squared Euclidean distances also give a significant deviation (98.51 per cent).
Astronomy and Astrophysics | 2011
A. de Ugarte Postigo; I. Horváth; P. Veres; Zsolt Bagoly; D. A. Kann; C. C. Thöne; L. G. Balázs; Paolo D'Avanzo; M. A. Aloy; S. Foley; Sergio Campana; Ji-Rong Mao; P. Jakobsson; S. Covino; J. P. U. Fynbo; J. Gorosabel; A. J. Castro-Tirado; L. Amati; M. Nardini
Context. Gamma-ray bursts are usually classified in terms their high-energy emission into either short-duration or long-duration bursts, which presumably reflect two different types of progenitors. However, it has been shown on statistical grounds that a third, intermediate population is needed in this classification scheme, although an extensive study of the properties of this class has so far not been performed. The large amount of follow-up studies generated during the Swift era allows us to have a sufficient sample to attempt a study of this third population through the properties of their prompt emission and their afterglows. Aims. To understand the differences of the intermediate population, we study a sample of GRBs observed by Swift during its first four years of operation. The sample contains only bursts with measured redshifts since these data help us to derive intrinsic properties. Methods. We search for differences in the properties of the three groups of bursts, which we quantify using a Kolmogorov-Smirnov test whenever possible. Results. Intermediate bursts are found to be less energetic and have dimmer afterglows than long GRBs, especially when considering the X-ray light curves, which are on average one order of magnitude fainter than long bursts. There is a less significant trend in the redshift distribution that places intermediate bursts closer than long bursts. Except for this, intermediate bursts show similar properties to long bursts. In particular, they follow the E-peak versus E-iso correlation and have, on average, positive spectral lags with a distribution similar to that of long bursts. As for long GRBs, they normally have an associated supernova, although some intermediate bursts have been found to contain no supernova component. Conclusions. This study shows that intermediate bursts differ from short bursts, but exhibit no significant differences from long bursts apart from their lower brightness. We suggest that the physical difference between intermediate and long bursts could be explained by being produced by similar progenitors, of the former being the ejecta thin shells and the latter thick shells.
Astronomy and Astrophysics | 2006
Zsolt Bagoly; A. Mészáros; Lajos G. Balázs; István T. Horváth; Sylvio Klose; S. Larsson; P. Meszaros; F. Ryde; Gábor Tusnády
Until 6 October 2005 sixteen redshifts had been measured of long gamma-ray bursts discovered by the Swift satellite. Further 45 redshifts have been measured of the long gamma- ray bursts discovered by other satellites. Here we perform five statistical tests comparing the redshift distributions of these two samples assuming as the null hypothesis an identical distribution for the two samples. Three tests (Students t-test, Mann-Whitney test, Kolmogorov-Smirnov test) reject the null hypothesis at significance levels between 97.19 and 98.55%. Two different comparisons of the medians show extreme (99.78 - 99.99994)% significance levels of rejection. This means that the redshifts of the Swift sample and the redshifts of the non-Swift sample are distributed differently - in the Swift sample the redshifts are on average larger. This statistical result suggests that the long GRBs should on average be at the higher redshifts of the Swift sample.
The Astrophysical Journal | 1998
Zsolt Bagoly; A. Mészáros; Istvan Horvath; Lajos G. Balázs; P. Meszaros
We have carried out a principal component analysis for 625 gamma-ray bursts in the BATSE 3B catalog for which nonzero values exist for the nine measured variables. This shows that only two out of the three basic quantities of duration, peak flux, and fluence are independent, even if this relation is strongly affected by instrumental effects, and these two account for 91.6% of the total information content. The next most important variable is the fluence in the fourth energy channel (at energies above 320 keV). This has a larger variance and is less correlated with the fluences in the remaining three channels than the latter correlate among themselves. Thus a separate consideration of the fourth channel and an increased attention paid to the related hardness ratio H43 appear useful for future studies. The analysis gives the weights for the individual measurements needed to define a single duration, peak flux, and fluence. It also shows that, in logarithmic variables, the hardness ratio H32 is significantly correlated with peak flux, while H43 is significantly anticorrelated with peak flux. The principal component analysis provides a potentially useful tool for estimating the improvement in information content to be achieved by considering alternative variables or for performing various corrections on available measurements.
Monthly Notices of the Royal Astronomical Society | 2015
Lajos G. Balázs; Zsolt Bagoly; Jon Hakkila; I. Horváth; József Kóbori; István Rácz; L. V. Tóth
According to the cosmological principle, Universal large-scale structure is homogeneous and isotropic. The observable Universe, however, shows complex structures even on very large scales. The recent discoveries of structures significantly exceeding the transition scale of 370 Mpc pose a challenge to the cosmological principle. We report here the discovery of the largest regular formation in the observable Universe; a ring with a diameter of 1720 Mpc, displayed by 9 gamma ray bursts (GRBs), exceeding by a factor of five the transition scale to the homogeneous and isotropic distribution. The ring has a major diameter of 43 o and a minor diameter of 30 o at a distance of 2770 Mpc in the 0.78 < z < 0.86 redshift range, with a probability of 2 × 10 6 of being the result of a random fluctuation in the GRB count rate. Evidence suggests that this feature is the projection of a shell onto the plane of the sky. Voids and string-like formations are common outcomes of large-scale structure. However, these structures have maximum sizes of 150 Mpc, which are an order of magnitude smaller than the observed GRB ring diameter. Evidence in support of the shell interpretation requires that temporal information of the transient GRBs be included in the analysis. This ring-shaped feature is large enough to contradict the cosmological principle. The physical mechanism responsible for causing it is unknown.
Astronomy and Astrophysics | 2005
F. Ryde; Dan Kocevski; Zsolt Bagoly; Nils Ryde; A. Mészáros
We analyze the spectral lags of a sample of bright gamma-ray burst pulses observed by CGRO BATSE and compare these with the results of high-resolution spectroscopical investigations. We find that pulses with hard spectra have the largest lags, and that there is a similar, but weaker correlation between hardness-intensity corre- lation index, �, and lag. We also find that the lags differ considerably between pulses within a burst. Furthermore, the peak energy mainly decreases with increasing lag. Assuming a lag-luminosity relation as suggested by Norris et al., there will thus be a positive luminosity-peak-energy correlation. We also find that the hardness ratio, of the total flux in two channels, only weakly correlates with the spectral evolution parameters. These results are consistent with those found in the analytical and numerical analysis in Paper I. Finally, we find that for these bursts, dominated by a single pulse, there is a correlation between the observed energy-flux, F, and the inverse of the lag, �t: F / �t 1 . We interpret this flux-lag relation found as a consequence of the lag-luminosity relation and that these bursts have to be relatively narrowly distributed in z. However, they still have to, mainly, lie beyond z � 0.01, since they do not coincide with the local super-cluster of galaxies. We discuss the observed correlations within the collapsar model, in which the collimation of the outflow varies. Both the thermal photospheric emission as well as non-thermal, optically-thin synchrotron emission should be important.