Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsolt Venkei is active.

Publication


Featured researches published by Zsolt Venkei.


Current Biology | 2011

CENP-C Is a Structural Platform for Kinetochore Assembly

Marcin R. Przewloka; Zsolt Venkei; Victor M. Bolanos-Garcia; Janusz Dębski; Michal Dadlez; David M. Glover

Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-Cs N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.


PLOS ONE | 2012

Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila.

Karolina Pircs; Péter Nagy; Ágnes Varga; Zsolt Venkei; Balázs Érdi; Krisztina Hegedus; Gábor Juhász

Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy.


Autophagy | 2014

Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila.

Péter Nagy; Ágnes Varga; Karolina Pircs; Zsolt Venkei; Szabolcs Takáts; Kata Varga; Balázs Érdi; Krisztina Hegedűs; Gábor Juhász

Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.


eLife | 2015

The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline

Mayu Inaba; Zsolt Venkei; Yukiko M. Yamashita

Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD. DOI: http://dx.doi.org/10.7554/eLife.04960.001


Open Biology | 2012

Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore

Zsolt Venkei; Marcin R. Przewloka; Yaseen Ladak; Shahad Albadri; Alex Sossick; Gábor Juhász; Bela Novak; David M. Glover

The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.


Genetics | 2011

Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint

Zsolt Venkei; Marcin R. Przewloka; David M. Glover

The kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout mitosis in Drosophila. We show that despite the sequential kinetochore recruitment of Mis12 complex subunits Mis12 and Nsl1, the complex acts as a single functional unit. mis12 and nsl1 mutants show strikingly similar developmental and mitotic defects in which chromosomes are able to congress at metaphase, but their anaphase movement is strongly affected. While kinetochore association of Ndc80 absolutely depends on both Mis12 and Nsl1, BubR1 localization shows only partial dependency. In the presence of residual centromeric BubR1 the checkpoint still responds to microtubule depolymerization but is significantly weaker. These observations point to a complexity of the checkpoint response that may reflect subpopulations of BubR1 associated with residual kinetochore components, the core centromere, or elsewhere in the cell. Importantly our results indicate that core structural elements of the inner plate of the kinetochore have a greater contribution to faithful chromosome segregation in anaphase than in earlier stages of mitosis.


Development | 2015

The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis.

Zsolt Venkei; Yukiko M. Yamashita

Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development. Accordingly, the mechanisms by which asymmetric cell division is achieved have been extensively studied, although the check points that are in place to protect against potential perturbation of the process are poorly understood. Drosophila melanogaster male germline stem cells (GSCs) possess a checkpoint, termed the centrosome orientation checkpoint (COC), that monitors correct centrosome orientation with respect to the component cells of the niche to ensure asymmetric stem cell division. To our knowledge, the COC is the only checkpoint mechanism identified to date that specializes in monitoring the orientation of cell division in multicellular organisms. Here, by establishing colcemid-induced microtubule depolymerization as a sensitive assay, we examined the characteristics of COC activity and find that it functions uniquely in GSCs but not in their differentiating progeny. We show that the COC operates in the G2 phase of the cell cycle, independently of the spindle assembly checkpoint. This study may provide a framework for identifying and understanding similar mechanisms that might be in place in other asymmetrically dividing cell types. Summary: The centrosome orientation checkpoint acts in Drosophila germline stem cells but not their progeny to ensure oriented cell division independent of the spindle assembly checkpoint.


Cell Cycle | 2009

Searching for Drosophila Dsn1 kinetochore protein

Marcin R. Przewloka; Zsolt Venkei; David M. Glover

The Mis12/MIND kinetochore complex is composed of 4 subunits of which the Dsn1 protein is a crucial component in all organisms where it has been identified. In Caenorhabditis elegans, depletion of Dsn1 results in a so-called “kinetochore null” phenotype, hence Dsn1’s alternative name KNL3. In human, Dsn1 is required to shape an interface between the Mis12 complex and Blinkin, the counterpart of Spc105. In Drosophila however, despite many efforts using sequence comparisons and proteomics-based studies, a Dsn1 ortholog has not been found. Here we speculate that Drosophila Spc105R, a protein very much diverged from its counterparts in other species, might not only be playing the role of Spc105 itself but also of Dsn1.


eLife | 2016

Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division

Cuie Chen; Mayu Inaba; Zsolt Venkei; Yukiko M. Yamashita

Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions. DOI: http://dx.doi.org/10.7554/eLife.20977.001


Journal of Cell Biology | 2018

Emerging mechanisms of asymmetric stem cell division

Zsolt Venkei; Yukiko M. Yamashita

Venkei and Yamashita summarize recent advances in our understanding of asymmetric stem cell division in tissue homeostasis.

Collaboration


Dive into the Zsolt Venkei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gábor Juhász

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Mayu Inaba

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Balázs Érdi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Karolina Pircs

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Péter Nagy

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Ágnes Varga

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge