Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsombor Lacza is active.

Publication


Featured researches published by Zsombor Lacza.


Free Radical Biology and Medicine | 2001

MITOCHONDRIAL NITRIC OXIDE SYNTHASE IS CONSTITUTIVELY ACTIVE AND IS FUNCTIONALLY UPREGULATED IN HYPOXIA

Zsombor Lacza; Michelle Puskar; Jorge P. Figueroa; Jie Zhang; Nishadi Rajapakse; David W. Busija

Nitric oxide is a potent modulator of mitochondrial respiration, ATP synthesis, and K(ATP) channel activity. Recent studies show the presence of a potentionally new isoform of the nitric oxide synthase (NOS) enzyme in mitochondria, although doubts have emerged regarding the physiological relevance of mitochondrial NOS (mtNOS). The aim of the present study were to: (i) examine the existence and distribution of mtNOS in mouse tissues using three independent methods, (ii) characterize the cross-reaction of mtNOS with antibodies against the known isoforms of NOS, and (iii) investigate the effect of hypoxia on mtNOS activity. Nitric oxide synthase activity was measured in isolated brain and liver mitochondria using the arginine to citrulline conversion assay. Mitochondrial NOS activity in the brain was significantly higher than in the liver. The calmodulin inhibitor calmidazolium completely inhibited mtNOS activity. In animals previously subjected to hypoxia, mtNOS activity was significantly higher than in the normoxic controls. Antibodies against the endothelial (eNOS), but not the neuronal or inducible isoform of NOS, showed positive immunoblotting. Immunogold labeling of eNOS located the enzyme in the matrix and the inner membrane using electron microscopy. We conclude that mtNOS is a constitutively active eNOS-like isoform and is involved in altered mitochondrial regulation during hypoxia.


Free Radical Biology and Medicine | 2003

Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS.

Zsombor Lacza; James A. Snipes; Jie Zhang; Eszter M. Horváth; Jorge P. Figueroa; Csaba Szabó; David W. Busija

Recent studies indicated that there is a distinct mitochondrial nitric oxide synthase (mtNOS) enzyme, which may be identical to the other known NOS isoforms. We investigated the possible involvement of the endothelial, the neuronal, and the inducible NOS isoforms (eNOS, nNOS, iNOS, respectively) in mitochondrial NO production. Mouse liver mitochondria were prepared by Percoll gradient purification from wild-type and NOS knockout animals. NOS activity was measured by the arginine conversion assay, NO production of live mitochondria was visualized by the fluorescent probe DAF-FM with confocal microscopy and measured with flow cytometry. Western blotting or immunoprecipitation was performed with 12 different anti-NOS antibodies. Mitochondrial NOS was purified by arginine, 2,5 ADP and calmodulin affinity columns. We observed NO production and NOS activity in mitochondria, which was not attenuated by classic NOS inhibitors. We also detected low amounts of eNOS protein in the mitochondria, however, NO production and NOS activity were intact in eNOS knockout animals. Neither nNOS nor iNOS were present in the mitochondria. Furthermore, we could not find mitochondrial targeting signals in the sequences of either NOS proteins. Taken together, the presented data do not support the hypothesis that any of the known NOS enzymes are present in the mitochondria in physiologically relevant levels.


BMC Cell Biology | 2010

Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections

Attila Cselenyák; Eszter Pankotai; Eszter M. Horváth; Levente Kiss; Zsombor Lacza

BackgroundBone marrow derived mesenchymal stem cells (MSCs) are promising candidates for cell based therapies in myocardial infarction. However, the exact underlying cellular mechanisms are still not fully understood. Our aim was to explore the possible role of direct cell-to-cell interaction between ischemic H9c2 cardiomyoblasts and normal MSCs. Using an in vitro ischemia model of 150 minutes of oxygen glucose deprivation we investigated cell viability and cell interactions with confocal microscopy and flow cytometry.ResultsOur model revealed that adding normal MSCs to the ischemic cell population significantly decreased the ratio of dead H9c2 cells (H9c2 only: 0.85 ± 0.086 vs. H9c2+MSCs: 0.16 ± 0.035). This effect was dependent on direct cell-to-cell contact since co-cultivation with MSCs cultured in cell inserts did not exert the same beneficial effect (ratio of dead H9c2 cells: 0.90 ± 0.055). Confocal microscopy revealed that cardiomyoblasts and MSCs frequently formed 200-500 nm wide intercellular connections and cell fusion rarely occurred between these cells.ConclusionBased on these results we hypothesize that mesenchymal stem cells may reduce the number of dead cardiomyoblasts after ischemic damage via direct cell-to-cell interactions and intercellular tubular connections may play an important role in these processes.


Journal of Molecular and Cellular Cardiology | 2003

Heart mitochondria contain functional ATP-dependent K+ channels

Zsombor Lacza; James A. Snipes; Allison W. Miller; Csaba Szabó; Gary J. Grover; David W. Busija

Recent observations challenged the functional importance or even the existence of mitochondrial ATP-dependent K+ (mitoK(ATP)) channels. In the present study, we determined the presence of K(ATP)-channel subunits in mouse heart mitochondria, and investigated whether known openers or blockers of the channel can alter mitochondrial membrane potential. Investigation of the channel composition was performed with antibodies against K(ATP)-channel subunits, namely the sulfonylurea receptor (SUR1 or SUR2) and the inwardly rectifying K+ channel (Kir6.1 or Kir6.2). Specific Kir6.1 and Kir6.2 proteins were found in the mitochondria by western blotting and immunogold electron microscopy. Neither SUR1 nor SUR2 was present in the mitochondria. In contrast, a mitochondrially enriched low molecular weight SUR2-like band was found at approximately 25 kDa. Mitochondrial-transport tags were identified in the sequences of Kir6.1 and Kir6.2, but not in SUR1 or SUR2. The fluorescent BODIPY-glibenclamide labeling of mitochondria indicated direct sulfonylurea binding. Pharmacological characterization of mitoK(ATP) was performed in isolated respiring heart mitochondria. Fluorescent confocal imaging with the membrane potential-sensitive dye MitoFluorRed showed that glibenclamide application changed membrane potential, while the specific mitoK(ATP)-channel openers, diazoxide or BMS-191095, reversed the effect. Mitochondrially formed peroxynitrite is a physiological opener of the channel. We conclude that a functional K(ATP) channel is present in heart mitochondria, which can be opened by diazoxide or BMS-191095. The channel can be composed of Kir6.1 and Kir6.2 subunits and does not contain either SUR1 or SUR2.


Brain Research | 2003

Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain

Zsombor Lacza; James A. Snipes; Bela Kis; Csaba Szabó; Gary J. Grover; David W. Busija

Selective activation of mitoK(ATP) channels can protect the brain or cultured neurons against a variety of anoxic or metabolic challenges. However, little is known about the subunit composition or functional regulation of the channel itself. In the present study, we sought to characterize the mitoK(ATP) channel in the mouse brain using overlapping approaches. First, we determined that mitochondria contain the pore-forming Kir6.1 and Kir6.2 subunits with Western blotting, immunogold electron microscopy and the identification of mitochondrial transport sequences. In contrast, we found no evidence for the presence of either known sulfonylurea receptors (SUR1 or SUR2) in the mitochondria. However, the ATP-dependent K (K(ATP)) channel inhibitor glibenclamide specifically binds to mitochondria in both neurons and astrocytes, and small molecular weight SUR2-like proteins were concentrated in mitochondria. In addition to mice, similar results were found in rats and pigs. Second, live respiring mitochondria were stained with the membrane potential sensitive dye MitoFluorRed and visualized by confocal microscopy. We investigated the effects of pharmacological closing and opening of the channel with glibenclamide and the specific mitoK(ATP) openers diazoxide and BMS-191095. Closing of the channel inhibited the energization of the mitochondria, which was reversed by the application of the mitoK(ATP) openers. We also found that blocking mitochondrial peroxynitrite formation with FP15 has a similar effect to blocking the mitoK(ATP) channels. We conclude that brain mitochondria contain functional K(ATP) channels. The pore-forming subunit of the channel can be either Kir6.1 or Kir6.2, and the SUR subunit may be a SUR2 splice variant or a similar protein.


Neurochemistry International | 2011

Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo

Marianna Király; Kristóf Kádár; Dénes B. Horváthy; Péter Nardai; Gábor Z. Rácz; Zsombor Lacza; Gábor Varga; Gábor Gerber

Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (-60°C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300 μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping. Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (I(Na)) and TEA sensitive delayed rectifier potassium currents (K(DR)). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive K(DR) significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured.


Neuroscience Letters | 2002

Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats

Nishadi Rajapakse; Katsuyoshi Shimizu; Bela Kis; James A. Snipes; Zsombor Lacza; David W. Busija

Activation of mitochondrial ATP-sensitive potassium channels (mK(ATP)) has been shown to protect against cell death following ischemia/reperfusion in the heart but not in brain. We examined whether mK(ATP) activation with diazoxide (DIZ) prevents neuronal cell death following hypoxia-ischemia (HI) in 7-day-old rat pups. Rat pups were subjected to HI (left carotid ligation; 8% O(2); 2.5 h), following administration of vehicle, 1.9 mg/kg DIZ, 3.8 mg/kg DIZ or DIZ plus 10 mg/kg 5-hydroxydecanoic acid (mK(ATP) antagonist). Total infarct volume was reduced from 99.8+/-2.7% in vehicle animals to 80.6+/-4.2% in 3.8 mg/kg DIZ treated animals (n=85, P<0.05). Western blotting showed K(ATP) subunits concentrated in mitochondria. Fluorescent studies indicated DIZ directly depolarized the mitochondria. In conclusion, selective opening of mK(ATP) prior to HI results in neuroprotection in immature rats.


Frontiers in Bioscience | 2009

Mitochondrial nitric oxide synthase: current concepts and controversies.

Zsombor Lacza; Eszter Pankotai; David W. Busija

New discoveries in the last decade significantly altered our view on mitochondria. They are no longer viewed as energy-making slaves but rather individual cells-within-the-cell. In particular, it has been suggested that many important cellular mechanisms involving specific enzymes and ion channels, such as nitric oxide synthase (NOS), ATP-dependent K+ (KATP) channels, and poly-(APD-ribose) polymerase (PARP), have a distinct, mitochondrial variant. Unfortunately, exploring these parallel systems in mitochondria have technical limitations and inappropriate methods often led to inconsistent results. For example, the intriguing possibility that mitochondria are significant sources of nitric oxide (NO) via a unique mitochondrial NOS variant has attracted intense interest among research groups because of the potential for NO to affect functioning of the electron transport chain. Nonetheless, conclusive evidence concerning the existence of mitochondrial NO synthesis is yet to be presented. This review summarizes the experimental evidence gathered over the last decade in this field and highlights new areas of research that reveal surprising dimensions of NO production and metabolism by mitochondria.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Elevated systemic TGF-β impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice

Anna Buday; Petra Orsy; Mária Godó; Miklós Mózes; Gábor Kökény; Zsombor Lacza; Akos Koller; Zoltan Ungvari; Marie Luise Gross; Zoltán Benyó; Péter Hamar

The role of circulating, systemic TGF-beta levels in endothelial function is not clear. TGF-beta(1) may cause endothelial dysfunction in apolipoprotein E-deficient (apoE(-/-)) mice via stimulation of reactive oxygen species (ROS) production by the NADPH oxidase (NOX) system and aggravate aortic and heart remodeling and hypertension. Thoracic aorta (TA) were isolated from 4-mo-old control (C57Bl/6), apoE(-/-), TGF-beta(1)-overexpressing (TGFbeta(1)), and crossbred apoE(-/-) x TGFbeta(1) mice. Endothelium-dependent relaxation was measured before and after incubation with apocynin (NOX inhibitor) or superoxide dismutase (SOD; ROS scavenger). Superoxide production within the vessel wall was determined by dihydroethidine staining under confocal microscope. In 8-mo-old mice, aortic and myocardial morphometric changes, plaque formation by en face fat staining, and blood pressure were determined. Serum TGF-beta(1) levels (ELISA) were elevated in TGFbeta(1) mice without downregulation of TGF-beta-I receptor (immunohistochemistry). In the aortic wall, superoxide production was enhanced and NO-dependent relaxation diminished in apoE(-/-) x TGFbeta(1) mice but improved significantly after apocynin or SOD. Myocardial capillary density was reduced, fibrocyte density increased, aortic wall was thicker, combined lesion area was greater, and blood pressure was higher in the apoE(-/-) x TGFbeta vs. C57Bl/6 mice. Our results demonstrate that elevated circulating TGF-beta(1) causes endothelial dysfunction through NOX activation-induced oxidative stress, accelerating atherosclerosis and hypertension in apoE(-/-) mice. These findings may provide a mechanism explaining accelerated atherosclerosis in patients with elevated plasma TGFbeta(1).


Journal of Neurochemistry | 2004

Lack of mitochondrial nitric oxide production in the mouse brain

Zsombor Lacza; Thomas F.W. Horn; James A. Snipes; Jie Zhang; Sanjoy Roychowdhury; Eszter M. Horváth; Jorge P. Figueroa; Márk Kollai; Csaba Szabó; David W. Busija

Based on our initial finding that the nitric oxide (NO) sensitive fluorochrome diaminofluorescein (DAF) was localized to mitochondria in cultured primary neurons, we investigated whether brain mitochondria produce NO through a mitochondrial NO synthase (mtNOS) enzyme. Isolated brain mitochondria were loaded with DAF and subjected to flow cytometry analysis. Neither the application of NOS inhibitors nor the genetic disruption of either NOS gene diminished the DAF‐fluorescence. However, peroxynitrite scavengers reduced the mitochondrial DAF fluorescence, indicating that the DAF signal is not specific to NO. Chemiluminescence detection in the head space gas and a Clark‐type NO‐sensitive electrode in the solution failed to detect NO release in brain mitochondria. NOS activity in mitochondria was only 1% of the whole brain NOS activity level, which may be attributed to extramitochondrial contamination. Extensive immunoblotting and immunoprecipitation experiments failed to show the presence of endothelial, neuronal, or inducible NOS in mouse brain mitochondria using a variety of primary antibodies. Arginine, calmodulin or 2,5‐ADP affinity purification protocols successfully concentrated eNOS and nNOS from full brain tissue but failed to show any signal in mitochondria. We conclude that mouse brain mitochondria do not contain NOS isoforms, nor do they produce NO through a NOS‐dependent mechanism.

Collaboration


Dive into the Zsombor Lacza's collaboration.

Researchain Logo
Decentralizing Knowledge