Zsuzsanna Bősze
Biotechnology Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zsuzsanna Bősze.
Differentiation | 2011
Zsuzsanna Lichner; Emőke Páll; Andrea Kerekes; Éva Pállinger; Pouneh Maraghechi; Zsuzsanna Bősze; Elen Gócza
The mmu-miR-290-295 cluster codes for a family of microRNAs (miRNAs) that are expressed de novo during early embryogenesis and are specific for mouse embryonic stem cells (ESC) and embryonic carcinoma cells (ECC). Detailed sequence analysis and alignment studies of miR-290-295 precursors demonstrated that the cluster has evolved by repeated duplication events of the ancient miR-290 precursor. We show that under serum starvation, overexpression of miR-290-295 miRNAs withhold ES cells from early differentiation, ensures their high proliferation rate and capacity for forming alkaline phosphate positive colonies. Transcriptome analysis revealed that differentiation related marker genes are underexpressed upon high miR-290-295 level. Importantly, miR-290-295 overexpression prevents ES cells from accumulation in G1 phase at low serum level, and seems to regulate cell cycle in different phases. Our data underline that miR-290-295 miRNAs contribute to the natural absence of G1 checkpoint in embryonic stem cells. We define the cell cycle regulators Wee1 and Fbxl5 as potential direct targets of miR-290-295 miRNAs in vitro. Our results suggest that miR-290-295 miRNAs exhibit their effect predominantly through the regulation of cell cycle phase distribution.
The FASEB Journal | 2013
Katharina Katter; Aron M. Geurts; Orsolya Ivett Hoffmann; Lajos Mátés; Vladimír Landa; László Hiripi; Carol Moreno; Jozef Lazar; Sanum Bashir; Vaclav Zidek; Elena Popova; Boris Jerchow; Katja Becker; Anantharam Devaraj; Ingrid Walter; Michael Grzybowksi; Molly Corbett; Artur Rangel Filho; Matthew R. Hodges; Michael Bader; Zoltán Ivics; Howard J. Jacob; Michal Pravenec; Zsuzsanna Bősze; Thomas Rülicke; Zsuzsanna Izsvák
Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50–64, 14–72, and 15% in mice, rats, and rabbits, respectively. The SB100X‐mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus‐mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single‐copy integrations. The transposon vector also allows the generation of transgenic lines with tissue‐specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn‐hooded hypertensive rat by SB100X transgenesis. A side‐by‐side comparison of the SB100X‐ and piggyBac‐based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.—Katter, K., Geurts, A. M., Hoffmann, O., Mátés, L., Landa, V., Hiripi, L., Moreno, C., Lazar, J., Bashir, S., Zidek, V., Popova, E., Jerchow, B., Becker, K., Devaraj, A., Walter, I., Grzybowksi, M., Corbett, M., Rangel Filho, A., Hodges, M. R., Bader, M., Ivics, Z., Jacob, H. J., Pravenec, M., Bősze, Z., Rülicke, T., Izsvák, Z. Transposon‐mediated transgenesis, transgenic rescue, and tissue‐specific gene expression in rodents and rabbits. FASEB J. 27, 930–941 (2013). www.fasebj.org
PLOS ONE | 2012
Ana Paula Catunda Lemos; Judit Cervenak; Balázs Bender; Orsolya Ivett Hoffmann; Mária Baranyi; Andrea Kerekes; Anita Farkas; Zsuzsanna Bősze; László Hiripi; Imre Kacskovics
The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits – having one extra copy of the FcRn when hemizygous and two extra copies when homozygous - showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies.
Cellular and Molecular Life Sciences | 2011
Dániel Márton Tóth; Éva Szőke; Kata Bölcskei; Krisztian Kvell; Balázs Bender; Zsuzsanna Bősze; János Szolcsányi; Zoltán Sándor
Transgenic mice with a small hairpin RNA construct interfering with the expression of transient receptor potential vanilloid 1 (TRPV1) were created by lentiviral transgenesis. TRPV1 expression level in transgenic mice was reduced to 8% while the expression of ankyrin repeat domain 1 (TRPA1) was unchanged. Ear oedema induced by topical application of TRPV1 agonist capsaicin was completely absent in TRPV1 knockdown mice. Thermoregulatory behaviour in relation to environmental thermopreference (30 vs. 35°C) was slightly impaired in male knockdown mice, but the reduction of TRPV1 function was not associated with enhanced hyperthermia. TRPV1 agonist resiniferatoxin induced hypothermia and tail vasodilatation was markedly inhibited in knockdown mice. In conclusion, shRNA-mediated knock down of the TRPV1 receptor in mice induced robust inhibition of the responses to TRPV1 agonists without altering the expression, gating function or neurogenic oedema provoked by TRPA1 activation. Thermoregulatory behaviour in response to heat was inhibited, but enhanced hyperthermia was not observed.
Cloning and Stem Cells | 2008
Ana Paula Catunda; Elen Gócza; Bogdan Valer Carstea; László Hiripi; H. Hayes; Claire Rogel-Gaillard; Maud Bertaud; Zsuzsanna Bősze
Leukemia inhibitory factor (LIF) is a multifunctional cytokine with an important role during early embryonic development, implantation, and as an inhibitor of murine embryonic stem cell differentiation. It exerts its effects by binding to the leukemia inhibitory factor receptor, a heterodimer of two transmembrane proteins, the specific leukemia inhibitory factor receptor subunit, and the common gp130. A partial cDNA clone coding for the membrane-bound form of the specific rabbit leukemia inhibitory factor receptor was isolated from the genital ridge of 13.5 days postcoitum fetus. Fluorescent in situ hybridization analysis revealed that the rabbit leukemia inhibitory factor receptor gene is located on chromosome OCU11p11.1. It has been shown that the membrane-bound rabbit leukemia inhibitory factor receptor mRNA is expressed during embryo implantation but not at earlier developmental stages. Rabbit embryonic stem cell-like line establishment is improved in the presence of LIF, and those cells express both leukemia inhibitory factor and its receptor. The withdrawal of leukemia inhibitory factor results the differentiation of embryonic stem cell-like cells to beating myocardial-like cells. Our findings suggest that the self-renewal mechanism is similar in mouse and rabbit embryonic stem cells, and expands our knowledge on the role of the LIF-LIFR signal pathway in early rabbit embryogenesis and rabbit embryonic stem cell establishment.
British Journal of Pharmacology | 2016
Péter Major; István Baczkó; László Hiripi; Katja E. Odening; Viktor Juhász; Zsófia Kohajda; András Horváth; György Seprényi; Mária Kovács; László Virág; Norbert Jost; János Prorok; Balázs Ördög; Zoltán Doleschall; Stanley Nattel; András Varró; Zsuzsanna Bősze
The reliable assessment of proarrhythmic risk of compounds under development remains an elusive goal. Current safety guidelines focus on the effects of blocking the KCNH2/HERG ion channel‐in tissues and animals with intact repolarization. Novel models with better predictive value are needed that more closely reflect the conditions in patients with cardiac remodelling and reduced repolarization reserve.
Journal of The American Society of Nephrology | 2015
Kornélia Szebényi; András Füredi; Orsolya Kolacsek; Rózsa Csohány; Ágnes Prókai; Katalin Kis-Petik; Attila J. Szabó; Zsuzsanna Bősze; Balázs Bender; József Tóvári; Ágnes Enyedi; Tamás I. Orbán; Balázs Sarkadi
Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin-based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations.
Progress in Biophysics & Molecular Biology | 2016
Zsuzsanna Bősze; P. Major; István Baczkó; Katja E. Odening; L. Bodrogi; László Hiripi; András Varró
Since the creation of the first transgenic rabbit thirty years ago, pronuclear microinjection remained the single applied method and resulted in numerous important rabbit models of human diseases, including cardiac deficiencies, albeit with low efficiency. For additive transgenesis a novel transposon mediated method, e.g., the Sleeping Beauty transgenesis, increased the efficiency, and its application to create cardiac disease models is expected in the near future. The targeted genome engineering nuclease family, e.g., the zink finger nuclease (ZFN), the transcription activator-like effector nuclease (TALEN) and the newest, clustered regularly interspaced short palindromic repeats (CRISPR) with the CRISPR associated effector protein (CAS), revolutionized the non-mouse transgenesis. The latest gene-targeting technology, the CRISPR/CAS system, was proven to be efficient in rabbit to create multi-gene knockout models. In the future, the number of tailor-made rabbit models produced with one of the above mentioned methods is expected to exponentially increase and to provide adequate models of heart diseases.
Progress in Biophysics & Molecular Biology | 2016
István Baczkó; Norbert Jost; László Virág; Zsuzsanna Bősze; András Varró
It is essential to more reliably assess the pro-arrhythmic liability of compounds in development. Current guidelines for pre-clinical and clinical testing of drug candidates advocate the use of healthy animals/tissues and healthy individuals and focus on the test compounds ability to block the hERG current and prolong cardiac ventricular repolarization. Also, pre-clinical safety tests utilize several species commonly used in cardiac electrophysiological studies. In this review, important species differences in cardiac ventricular repolarizing ion currents are considered, followed by the discussion on electrical remodeling associated with chronic cardiovascular diseases that leads to altered ion channel and transporter expression and densities in pathological settings. We argue that the choice of species strongly influences experimental outcome and extrapolation of results to human clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a useful species for pharmacological pro-arrhythmic investigations. In addition to healthy animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) is suggested that more closely resemble subsets of patients exhibiting increased vulnerability towards the development of ventricular arrhythmias and sudden cardiac death.
Scientific Reports | 2015
Kornélia Szebényi; András Füredi; Orsolya Kolacsek; Enikő Pergel; Zsuzsanna Bősze; Balázs Bender; Péter Vajdovich; József Tóvári; László Homolya; Gergely Szakács; László Héja; Ágnes Enyedi; Balázs Sarkadi; Tamás I. Orbán
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.