Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Darula is active.

Publication


Featured researches published by Zsuzsanna Darula.


Molecular & Cellular Proteomics | 2002

Chemical Approaches for Functionally Probing the Proteome

Doron C. Greenbaum; Amos Baruch; Linda Hayrapetian; Zsuzsanna Darula; Alma L. Burlingame; K. F. Medzihradszky; Matthew Bogyo

With the availability of complete genome sequences, emphasis has shifted toward the understanding of protein function. We have developed a functional proteomic methodology that makes use of chemically reactive fluorescent probes to profile and identify enzymes in complex mixtures by virtue of their catalytic activity. This methodology allows a comparison of changes in activity of multiple enzymes under a variety of conditions using a single two-dimensional separation. The probes can also be used to localize active enzymes in intact cells using fluorescence microscopy. Furthermore, the probes enable screens for selective small molecule inhibitors of each enzyme family member within crude lysates or intact cells. Ultimately, this technology allows the rapid identification of potential drug targets and small molecule lead compounds targeted to them.


Current Biology | 2007

Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes

Éva Kurucz; Robert Markus; János Zsámboki; Katalin Folkl-Medzihradszky; Zsuzsanna Darula; Péter Vilmos; Andor Udvardy; Ildikó Krausz; Tamas Lukacsovich; Elisabeth Gateff; Carl Johan Zettervall; Dan Hultmark; István Andó

The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.


Molecular & Cellular Proteomics | 2004

O-Sulfonation of Serine and Threonine Mass Spectrometric Detection and Characterization of a New Posttranslational Modification in Diverse Proteins Throughout the Eukaryotes

K. F. Medzihradszky; Zsuzsanna Darula; Eran Perlson; Michael Fainzilber; Robert J. Chalkley; Haydn L. Ball; Doron C. Greenbaum; Matthew Bogyo; Darren R. Tyson; Ralph A. Bradshaw; Alma L. Burlingame

Protein sulfonation on serine and threonine residues is described for the first time. This post-translational modification is shown to occur in proteins isolated from organisms representing a broad span of eukaryote evolution, including the invertebrate mollusk Lymnaea stagnalis, the unicellular malaria parasite Plasmodium falciparum, and humans. Detection and structural characterization of this novel post-translational modification was carried out using liquid chromatography coupled to electrospray tandem mass spectrometry on proteins including a neuronal intermediate filament and a myosin light chain from the snail, a cathepsin-C-like enzyme from the parasite, and the cytoplasmic domain of the human orphan receptor tyrosine kinase Ror-2. These findings suggest that sulfonation of serine and threonine may be involved in multiple functions including protein assembly and signal transduction.


Plant Physiology | 2008

Arabidopsis PPR40 Connects Abiotic Stress Responses to Mitochondrial Electron Transport

Laura Zsigmond; Gábor Rigó; András Szarka; Gyöngyi Székely; Krisztina Ötvös; Zsuzsanna Darula; Katalin F. Medzihradszky; Csaba Koncz; Zsuzsa Koncz; László Szabados

Oxidative respiration produces adenosine triphosphate through the mitochondrial electron transport system controlling the energy supply of plant cells. Here we describe a mitochondrial pentatricopeptide repeat (PPR) domain protein, PPR40, which provides a signaling link between mitochondrial electron transport and regulation of stress and hormonal responses in Arabidopsis (Arabidopsis thaliana). Insertion mutations inactivating PPR40 result in semidwarf growth habit and enhanced sensitivity to salt, abscisic acid, and oxidative stress. Genetic complementation by overexpression of PPR40 complementary DNA restores the ppr40 mutant phenotype to wild type. The PPR40 protein is localized in the mitochondria and found in association with Complex III of the electron transport system. In the ppr40-1 mutant the electron transport through Complex III is strongly reduced, whereas Complex IV is functional, indicating that PPR40 is important for the ubiqinol-cytochrome c oxidoreductase activity of Complex III. Enhanced stress sensitivity of the ppr40-1 mutant is accompanied by accumulation of reactive oxygen species, enhanced lipid peroxidation, higher superoxide dismutase activity, and altered activation of several stress-responsive genes including the alternative oxidase AOX1d. These results suggest a close link between regulation of oxidative respiration and environmental adaptation in Arabidopsis.


Molecular & Cellular Proteomics | 2009

Affinity Enrichment and Characterization of Mucin Core-1 Type Glycopeptides from Bovine Serum

Zsuzsanna Darula; Katalin F. Medzihradszky

The lack of consensus sequence, common core structure, and universal endoglycosidase for the release of O-linked oligosaccharides makes O-glycosylation more difficult to tackle than N-glycosylation. Structural elucidation by mass spectrometry is usually inconclusive as the CID spectra of most glycopeptides are dominated by carbohydrate-related fragments, preventing peptide identification. In addition, O-linked structures also undergo a gas-phase rearrangement reaction, which eliminates the sugar without leaving a telltale sign at its former attachment site. In the present study we report the enrichment and mass spectrometric analysis of proteins from bovine serum bearing Galβ1–3GalNAcα (mucin core-1 type) structures and the analysis of O-linked glycopeptides utilizing electron transfer dissociation and high resolution, high mass accuracy precursor ion measurements. Electron transfer dissociation (ETD) analysis of intact glycopeptides provided sufficient information for the identification of several glycosylation sites. However, glycopeptides frequently feature precursor ions of low charge density (m/z > ∼850) that will not undergo efficient ETD fragmentation. Exoglycosidase digestion was utilized to reduce the mass of the molecules while retaining their charge. ETD analysis of species modified by a single GalNAc at each site was significantly more successful in the characterization of multiply modified molecules. We report the unambiguous identification of 21 novel glycosylation sites. We also detail the limitations of the enrichment method as well as the ETD analysis.


Molecular & Cellular Proteomics | 2004

Differential Proteomics Reveals Multiple Components in Retrogradely Transported Axoplasm After Nerve Injury

Eran Perlson; Katalin F. Medzihradszky; Zsuzsanna Darula; David W. Munno; Naweed I. Syed; Alma L. Burlingame; Mike Fainzilber

Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of ∼4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.


Molecular & Cellular Proteomics | 2012

How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides

Zsuzsanna Darula; Jamie Sherman; Katalin F. Medzihradszky

Two different workflows were tested in order to develop methods that provide deeper insight into the secreted O-glycoproteome. Bovine serum samples were subjected to lectin affinity-chromatography both at the protein- and peptide-level in order to selectively isolate glycopeptides with the most common, mucin core-1 sugar. This enrichment step was implemented with either protein-level mixed-bed ion-exchange chromatography or with peptide-level electrostatic repulsion hydrophilic interaction chromatography. Both methods led to at least 65% of the identified products being glycopeptides, in comparison to ∼25% without the additional chromatography steps [Darula, Z., and Medzihradszky, K. F. (2009) Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell. Proteomics 8, 2515–2526]. In order to improve not only the isolation but also the characterization of the glycopeptides exoglycosidases were used to eliminate carbohydrate extensions from the directly peptide-bound GalNAc units. Consequent tandem MS analysis of the mixtures using higher-energy collision-dissociation and electron-transfer dissociation led to the identification of 124 glycosylation sites in 51 proteins. While the electron-transfer dissociation data provided the bulk of the information for both modified sequence and modification site assignment, the higher-energy collision-dissociation data frequently yielded confirmation of the peptide identity, and revealed the presence of some core-2 or core-3 oligosaccharides. More than two-thirds of the sites as well as the proteins have never been reported modified.


PLOS ONE | 2012

Altered Functional Protein Networks in the Prefrontal Cortex and Amygdala of Victims of Suicide

Katalin A. Kékesi; Gábor Juhász; Attila Simor; Péter Gulyássy; Éva M. Szegő; Éva Hunyadi-Gulyás; Zsuzsanna Darula; Katalin F. Medzihradszky; Miklós Palkovits; Botond Penke; András Czurkó

Probing molecular brain mechanisms related to increased suicide risk is an important issue in biological psychiatry research. Gene expression studies on post mortem brains indicate extensive changes prior to a successful suicide attempt; however, proteomic studies are scarce. Thus, we performed a DIGE proteomic analysis of post mortem tissue samples from the prefrontal cortex and amygdala of suicide victims to identify protein changes and biomarker candidates of suicide. Among our matched spots we found 46 and 16 significant differences in the prefrontal cortex and amygdala, respectively; by using the industry standard t test and 1.3 fold change as cut off for significance. Because of the risk of false discoveries (FDR) in these data, we also made FDR adjustment by calculating the q-values for all the t tests performed and by using 0.06 and 0.4 as alpha thresholds we reduced the number of significant spots to 27 and 9 respectively. From these we identified 59 proteins in the cortex and 11 proteins in the amygdala. These proteins are related to biological functions and structures such as metabolism, the redox system, the cytoskeleton, synaptic function, and proteolysis. Thirteen of these proteins (CBR1, DPYSL2, EFHD2, FKBP4, GFAP, GLUL, HSPA8, NEFL, NEFM, PGAM1, PRDX6, SELENBP1 and VIM,) have already been suggested to be biomarkers of psychiatric disorders at protein or genome level. We also pointed out 9 proteins that changed in both the amygdala and the cortex, and from these, GFAP, INA, NEFL, NEFM and TUBA1 are interacting cytoskeletal proteins that have a functional connection to glutamate, GABA, and serotonin receptors. Moreover, ACTB, CTSD and GFAP displayed opposite changes in the two examined brain structures that might be a suitable characteristic for brain imaging studies. The opposite changes of ACTB, CTSD and GFAP in the two brain structures were validated by western blot analysis.


The Plant Cell | 2013

Inactivation of Plasma Membrane–Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in Arabidopsis

Gábor Rigó; Ferhan Ayaydin; Olaf Tietz; Laura Zsigmond; Hajnalka Kovács; Anikó Páy; Klaus Salchert; Zsuzsanna Darula; Katalin F. Medzihradszky; László Szabados; Klaus Palme; Csaba Koncz; Ágnes Cséplo

This work shows that CRK5, a plasma membrane–associated member of the Arabidopsis Ca2+/calmodulin-dependent kinase-related protein family, phosphorylates the hydrophilic loop of PIN2 and is required for proper polar localization of PIN2 in the transition zones of roots. Inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of roots and shoots. CRK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5–green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane–associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling.


The EMBO Journal | 2015

Transcriptional repression by MYB3R proteins regulates plant organ growth

Kosuke Kobayashi; Toshiya Suzuki; Eriko Iwata; Norihito Nakamichi; Takamasa Suzuki; Poyu Chen; Misato Ohtani; Takashi Ishida; Hanako Hosoya; Sabine Müller; Tünde Leviczky; Aladár Pettkó-Szandtner; Zsuzsanna Darula; Akitoshi Iwamoto; Mika Nomoto; Yasuomi Tada; Tetsuya Higashiyama; Taku Demura; John H. Doonan; Marie-Theres Hauser; Keiko Sugimoto; Masaaki Umeda; Zoltán Magyar; László Bögre; Masaki Ito

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post‐mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M‐specific genes repressed in post‐mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor‐type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome‐wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M‐specific genes and to E2F target genes. MYB3R3 associates with the repressor‐type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post‐mitotic quiescent state determining organ size.

Collaboration


Dive into the Zsuzsanna Darula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Géza Tóth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

István Andó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Hunyadi-Gulyás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Adam Pap

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge