Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Izsvák is active.

Publication


Featured researches published by Zsuzsanna Izsvák.


Nature Genetics | 2000

Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system

Stephen R. Yant; Leonard Meuse; Winnie Chiu; Zoltán Ivics; Zsuzsanna Izsvák; Mark A. Kay

The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5–6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications.


Nature Genetics | 2008

Progress and prospects in rat genetics: a community view

Timothy J. Aitman; John K. Critser; Edwin Cuppen; Anna F. Dominiczak; Xosé M. Fernández-Suárez; Jonathan Flint; Dominique Gauguier; Aron M. Geurts; Michael N. Gould; Peter C. Harris; Rikard Holmdahl; Norbert Hubner; Zsuzsanna Izsvák; Howard J. Jacob; Takashi Kuramoto; Anne E. Kwitek; Anna Marrone; Tomoji Mashimo; Carol Moreno; John J. Mullins; Linda J. Mullins; Tomas Olsson; Michal Pravenec; Lela K. Riley; Kathrin Saar; Tadao Serikawa; James D Shull; Claude Szpirer; Simon N. Twigger; Birger Voigt

The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Blood | 2009

Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells

Thierry Vandendriessche; Zoltán Ivics; Zsuzsanna Izsvák; Marinee Chuah

Effective gene therapy requires robust delivery of the desired genes into the relevant target cells, long-term gene expression, and minimal risks of secondary effects. The development of efficient and safe nonviral vectors would greatly facilitate clinical gene therapy studies. However, nonviral gene transfer approaches typically result in only limited stable gene transfer efficiencies in most primary cells. The use of nonviral gene delivery approaches in conjunction with the latest generation transposon technology based on Sleeping Beauty (SB) or piggyBac transposons may potentially overcome some of these limitations. In particular, a large-scale genetic screen in mammalian cells yielded a novel hyperactive SB transposase, resulting in robust and stable gene marking in vivo after hematopoietic reconstitution with CD34(+) hematopoietic stem/progenitor cells in mouse models. Moreover, the first-in-man clinical trial has recently been approved to use redirected T cells engineered with SB for gene therapy of B-cell lymphoma. Finally, induced pluripotent stem cells could be generated after genetic reprogramming with piggyBac transposons encoding reprogramming factors. These recent developments underscore the emerging potential of transposons in gene therapy applications and induced pluripotent stem generation for regenerative medicine.


Cellular and Molecular Life Sciences | 2005

DNA transposons in vertebrate functional genomics

Csaba Miskey; Zsuzsanna Izsvák; Koichi Kawakami; Zoltán Ivics

Abstract.Genome sequences of many model organisms of developmental or agricultural importance are becoming available. The tremendous amount of sequence data is fuelling the next phases of challenging research: annotating all genes with functional information, and devising new ways for the experimental manipulation of vertebrate genomes. Transposable elements are known to be efficient carriers of foreign DNA into cells. Notably, members of the Tc1/mariner and the hAT transposon families retain their high transpositional activities in species other than their hosts. Indeed, several of these elements have been successfully used for transgenesis and insertional mutagenesis, expanding our abilities in genome manipulations in vertebrate model organisms. Transposon-based genetic tools can help scientists to understand mechanisms of embryonic development and pathogenesis, and will likely contribute to successful human gene therapy. We discuss the possibilities of transposon-based techniques in functional genomics, and review the latest results achieved by the most active DNA transposons in vertebrates. We put emphasis on the evolution and regulation of members of the best-characterized and most widely used Tc1/mariner family.


Blood | 2009

Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system

Xingkui Xue; Xin Huang; Sonja E. Nodland; Lajos Mátés; Linan Ma; Zsuzsanna Izsvák; Zoltán Ivics; Tucker W. LeBien; R. Scott McIvor; John E. Wagner; Xianzheng Zhou

Here we report stable gene transfer in cord blood-derived CD34(+) hematopoietic stem cells using a hyperactive nonviral Sleeping Beauty (SB) transposase (SB100X). In colony-forming assays, SB100X mediated the highest efficiency (24%) of stable Discosoma sp red fluorescent protein (DsRed) reporter gene transfer in committed hematopoietic progenitors compared with both the early-generation hyperactive SB11 transposase and the piggyBac transposon system (1.23% and 3.8%, respectively). In vitro differentiation assays further demonstrated that SB100X-transfected CD34(+) cells can develop into DsRed(+) CD4(+)CD8(+) T (3.17%-21.84%; median, 7.97%), CD19(+) B (3.83%-18.66%; median, 7.84%), CD56(+)CD3(-) NK (3.53%-79.98%; median, 7.88%), and CD33(+) myeloid (7.59%-15.63%; median, 9.48%) cells. SB100X-transfected CD34(+) cells achieved approximately 46% engraftment in NOD-scid IL2gammac(null) (NOG) mice. Twelve weeks after transplantation, 0.57% to 28.96% (median, 2.79%) and 0.49% to 34.50% (median, 5.59%) of total human CD45(+) cells in the bone marrow and spleen expressed DsRed, including CD19(+) B, CD14(+) monocytoid, and CD33(+) myeloid cell lineages. Integration site analysis revealed SB transposon sequences in the human chromosomes of in vitro differentiated T, B, NK, and myeloid cells, as well as in human CD45(+) cells isolated from bone marrow and spleen of transplanted NOG mice. Our results support the continuing development of SB-based gene transfer into human hematopoietic stem cells as a modality for gene therapy.


Current Gene Therapy | 2006

Transposons for gene therapy

Zoltán Ivics; Zsuzsanna Izsvák

Gene therapy is a promising strategy for the treatment of several inherited and acquired human diseases. Several vector platforms exist for the delivery of therapeutic nucleic acids into cells. Vectors based on viruses are very efficient at introducing gene constructs into cells, but their use has been associated with genotoxic effects of vector integration or immunological complications due to repeated administration in vivo. Non-viral vectors are easier to engineer and manufacture, but their efficient delivery into cells is a major challenge, and the lack of their chromosomal integration precludes long-term therapeutic effects. Transposable elements are non-viral gene delivery vehicles found ubiquitously in nature. Transposon-based vectors have the capacity of stable genomic integration and long-lasting expression of transgene constructs in cells. Molecular reconstruction of Sleeping Beauty, an ancient transposon in fish, represents a cornerstone in applying transposition-mediated gene delivery in vertebrate species, including humans. This review summarizes the state-of-the-art in the application of transposable elements for therapeutic gene transfer, and identifies key targets for the development of transposon-based gene vectors with enhanced efficacy and safety for human applications.


Molecular Therapy | 2009

Hybrid Lentivirus-transposon Vectors With a Random Integration Profile in Human Cells

Nicklas Heine Staunstrup; Brian Moldt; Lajos Mátés; Palle Villesen; Maria Jakobsen; Zoltán Ivics; Zsuzsanna Izsvák; Jacob Giehm Mikkelsen

Gene delivery by human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) is efficient, but genomic integration of the viral DNA is strongly biased toward transcriptionally active loci resulting in an increased risk of insertional mutagenesis in gene therapy protocols. Nonviral Sleeping Beauty (SB) transposon vectors have a significantly safer insertion profile, but efficient delivery into relevant cell/tissue types is a limitation. In an attempt to combine the favorable features of the two vector systems we established a novel hybrid vector technology based on SB transposase-mediated insertion of lentiviral DNA circles generated during transduction of target cells with integrase (IN)-defective LVs (IDLVs). By construction of a lentivirus-transposon hybrid vector allowing transposition exclusively from circular viral DNA substrates, we demonstrate that SB transposase added in trans directs efficient transposon mobilization from DNA circles in vector-transduced cells. Both transfected plasmid DNA and transduced IDLVs can serve as the source of active transposase. Most important, we demonstrate that the SB transposase overrides the natural lentiviral integration pathway and directs vector integration less frequently toward transcriptional units, resulting in a random genomic integration profile. The novel hybrid vector system combines the attractive features of efficient gene delivery by viral transduction and a safer genomic integration profile by DNA transposition.


Methods of Molecular Biology | 2004

Transposable Elements for Transgenesis and Insertional Mutagenesis in Vertebrates

Zoltán Ivics; Zsuzsanna Izsvák

Functional genomic analyses in vertebrate model systems, including fish, frogs, and mice, have greatly contributed to our understanding of embryonic development and human disease. However, new molecular tools and strategies are needed to meet the increasing demands of linking sequence information to gene function. Transposable elements (TEs) are very efficient at integrating into DNA, and are therefore useful vectors for transferring new genetic material into genomes. In particular, members of the Tc1/mariner superfamily of elements are able to transpose in species other than their hosts, and are therefore emerging tools for functional genomics in several organisms. This chapter describes strategies of using retrovirus vectors and DNA-based TEs for transgenesis and insertional mutagenesis in vertebrates, with special emphasis on the Sleeping Beauty (SB) element, a reconstructed Tc1/mariner-like transposon from fish. SB jumps efficiently in cells of diverse vertebrate species in culture, as well as in somatic and germline tissues of the mouse in vivo. Simple structure and easy laboratory handling of transposon vectors are coupled with efficient and stable transgene integration and persistent, long-term transgene expression by transposon-mediated gene transfer. These features all contribute to the usefulness of TEs as tools for vertebrate functional genomics, as well as for animal biotechnology and human gene therapy.


Stem Cells | 2009

Applying a “Double-Feature” Promoter to Identify Cardiomyocytes Differentiated from Human Embryonic Stem Cells Following Transposon-Based Gene Delivery†‡

Tamás I. Orbán; Andrea Németh; Nóra Varga; Virág Krízsik; Anita Schamberger; Kornélia Szebényi; Zsuzsa Erdei; György Várady; Éva Karászi; László Homolya; Katalin Német; Elen Gócza; Csaba Miskey; Lajos Mátés; Zoltán Ivics; Zsuzsanna Izsvák; Balázs Sarkadi

Human embryonic stem (HuES) cells represent a new potential tool for cell‐therapy and gene‐therapy applications. However, these approaches require the development of efficient, stable gene delivery, and proper progenitor cell and tissue separation methods. In HuES cell lines, we have generated stable, enhanced green fluorescent protein (EGFP)‐expressing clones using a transposon‐based (Sleeping Beauty) system. This method yielded high percentage of transgene integration and expression. Similarly to a lentiviral expression system, both the undifferentiated state and the differentiation pattern of the HuES cells were preserved. By using the CAG promoter, in contrast to several other constitutive promoter sequences (such as CMV, elongation factor 1α, or phosphoglycerate kinase), an exceptionally high EGFP expression was observed in differentiated cardiomyocytes. This phenomenon was independent of the transgene sequence, methods of gene delivery, copy number, and the integration sites. This “double‐feature” promoter behavior, that is providing a selectable marker for transgene expressing undifferentiated stem cells, and also specifically labeling differentiated cardiomyocytes, was assessed by transcriptional profiling. We found a positive correlation between CAG promoter‐driven EGFP transcription and expression of cardiomyocyte‐specific genes. Our experiments indicate an efficient applicability of transposon‐based gene delivery into HuES cells and provide a novel approach to identify differentiated tissues by exploiting a nontypical behavior of a constitutively active promoter, thereby avoiding invasive drug selection methods. Stem Cells 2009;27:1077–1087

Collaboration


Dive into the Zsuzsanna Izsvák's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lajos Mátés

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Scherman

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Manvendra Singh

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge