Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Várkonyi is active.

Publication


Featured researches published by Zsuzsanna Várkonyi.


Plant Physiology | 2011

Increased Thermostability of Thylakoid Membranes in Isoprene-Emitting Leaves Probed with Three Biophysical Techniques

Violeta Velikova; Zsuzsanna Várkonyi; Milán Szabó; Liliana Maslenkova; Isabel Nogues; László Kovács; Violeta Peeva; Mira Busheva; Győző Garab; Thomas D. Sharkey; Francesco Loreto

Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA515) was evaluated following single-turnover saturating flashes. The decay of ΔA515 was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S2QB− charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S2QB− redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: An FTIR spectroscopic study

Zsuzsanna Várkonyi; Kazuomori Masamoto; Mónika Debreczeny; Ottó Zsiros; Bettina Ughy; Zoltán Gombos; Ildikó Domonkos; Tibor Farkas; Hajime Wada; Balázs Szalontai

The effects of the growth temperature on the lipids and carotenoids of a filamentous cyanobacterium, Cylindrospermopsis raciborskii, were studied., The relative amounts of polyunsaturated glycerolipids and myxoxanthophylls in the thylakoid membranes increased markedly when this cyanobacterium was grown at 25°C instead of 35°C. Fourier transform infrared spectroscopy was used to analyze the low-temperature-induced structural alterations in the thylakoid membranes. Despite the higher amount of unsaturated lipids there, conventional analysis of the νsymCH2 band (characteristic of the lipid disorder) revealed more tightly arranged fatty-acyl chains for the thylakoids in the cells grown at 25°C as compared with those grown at 35°C. This apparent controversy was resolved by a two-component analysis of the νsymCH2 band, which demonstrated very rigid, myxoxanthophyll-related lipids in the thylakoid membranes. When this rigid component was excluded from the analysis of the thermotropic responses of the νsymCH2 bands, the expected higher fatty-acyl disorder was observed for the thylakoids prepared from cells grown at 25°C as compared with those grown at 35°C. Both the carotenoid composition and this rigid component in the thylakoid membranes were only growth temperature-dependent; the intensity of the illuminating light during cultivation had no apparent effect on these parameters. We propose that, besides their well-known protective functions, the polar carotenoids in particular may have structural effects on the thylakoid membranes. These effects should be exerted locally—by forming protective patches, in-membrane barriers of low dynamics—to prevent the access of reactive radicals generated in either enzymatic or photosynthetic processes to sensitive spots of the membranes.


Photosynthesis Research | 2009

Effect of phosphorylation on the thermal and light stability of the thylakoid membranes

Zsuzsanna Várkonyi; Gergely Nagy; Petar H. Lambrev; Anett Z. Kiss; Noemi Szekely; L. Rosta; Gyözö Garab

Higher plant thylakoid membranes contain a protein kinase that phosphorylates certain threonine residues of light-harvesting complex II (LHCII), the main light-harvesting antenna complexes of photosystem II (PSII) and some other phosphoproteins (Allen, Biochim Biophys Acta 1098:275, 1992). While it has been established that phosphorylation induces a conformational change of LHCII and also brings about changes in the lateral organization of the thylakoid membrane, it is not clear how phosphorylation affects the dynamic architecture of the thylakoid membranes. In order to contribute to the elucidation of this complex question, we have investigated the effect of duroquinol-induced phosphorylation on the membrane ultrastructure and the thermal and light stability of the chiral macrodomains and of the trimeric organization of LHCII. As shown by small angle neutron scattering on thylakoid membranes, duroquinol treatment induced a moderate (~10%) increase in the repeat distance of stroma membranes, and phosphorylation caused an additional loss of the scattering intensity, which is probably associated with the partial unstacking of the granum membranes. Circular dichroism (CD) measurements also revealed only minor changes in the chiral macro-organization of the complexes and in the oligomerization state of LHCII. However, temperature dependences of characteristic CD bands showed that phosphorylation significantly decreased the thermal stability of the chiral macrodomains in phosphorylated compared to the non-phosphorylated samples (in leaves and isolated thylakoid membranes, from 48.3°C to 42.6°C and from 47.5°C to 44.3°C, respectively). As shown by non-denaturing PAGE of thylakoid membranes and CD spectroscopy on EDTA washed membranes, phosphorylation decreased by about 5°C, the trimer-to-monomer transition temperature of LHCII. It also enhanced the light-induced disassembly of the chiral macrodomains and the monomerization of the LHCII trimers at 25°C. These data strongly suggest that phosphorylation of the membranes considerably facilitates the heat- and light-inducible reorganizations in the thylakoid membranes and thus enhances the structural flexibility of the membrane architecture.


Biochemical Society Transactions | 2000

The tolerance of cyanobacterium Cylindrospermopsis raciborskii to low- temperature photo-inhibition affected by the induction of polyunsaturated fatty acid synthesis

Zsuzsanna Várkonyi; Ottó Zsiros; Tibor Farkas; Gyözö Garab; Zoltán Gombos

Acyl-lipid desaturation introduces double bonds (unsaturated bonds) at specifically defined positions of fatty acids that are esterified to the glycerol backbone of membrane glycerolipids. Desaturation patterns of the glycerolipids of Cylindrospermopsis raciborskii, a filamentous cyanobacterium, were determined in cells grown at 35 degrees C and 25 degrees C. The lowering of the growth temperature from 35 degrees C to 25 degrees C resulted in a considerable accumulation of polyunsaturated octadecanoic fatty acids in all lipid classes. The tolerance to low-temperature photo-inhibition of the C. raciborskii cells grown at 25 degrees C and 35 degrees C was also compared. The lower growth temperature increased the tolerance of C. raciborskii cells. These results strengthen the importance of polyunsaturated glycerolipids in the tolerance to environmental stresses and may give a physiological explanation for the determinative role of C. raciborskii in algal blooming in Lake Balaton (Hungary).


Photosynthesis Research | 2012

Anisotropic Circular Dichroism Signatures of Oriented Thylakoid Membranes and Lamellar Aggregates of LHCII

Yuliya Miloslavina; Petar H. Lambrev; Tamás Jávorfi; Zsuzsanna Várkonyi; Václav Karlický; Joseph S. Wall; Geoffrey Hind; Győző Garab

In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment–pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while “psi-type” CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.


Plant and Cell Physiology | 2015

Elevated Growth Temperature Can Enhance Photosystem I Trimer Formation and Affects Xanthophyll Biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 Cells

Kinga Kłodawska; László Kovács; Zsuzsanna Várkonyi; Mihály Kis; Ozge Sozer; Hajnalka Laczkó-Dobos; Ottilia Kóbori; Ildikó Domonkos; Kazimierz Strzałka; Zoltán Gombos; Przemysław Malec

In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (ΔpsaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30°C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ΔpsaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of β-carotene. The measured H2O→CO2 oxygen evolution rates in the ΔpsaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure.


Plant and Cell Physiology | 2014

Membrane Crystals of Plant Light-Harvesting Complex II Disassemble Reversibly in Light.

Geoffrey Hind; Joseph S. Wall; Zsuzsanna Várkonyi; Anita Istokovics; Petar H. Lambrev; Gyo†zo† Garab

Using the mass-measuring capability of scanning transmission electron microscopy, we demonstrate that membrane crystals of the main light-harvesting complex of plants possess the ability to undergo light-induced dark-reversible disassociations, independently of the photochemical apparatus. This is the first direct visualization of light-driven reversible reorganizations in an isolated photosynthetic antenna. These reorganizations, identified earlier by circular dichroism (CD), can be accounted for by a biological thermo-optic transition: structural changes are induced by fast heat transients and thermal instabilities near the dissipation, and self-association of the complexes in the lipid matrix. A comparable process in native membranes is indicated by earlier findings of essentially identical kinetics, and intensity and temperature dependences of the ΔCD in granal thylakoids.


Journal of Photochemistry and Photobiology B-biology | 2014

Heat- and light-induced detachment of the light-harvesting antenna complexes of photosystem i in isolated stroma thylakoid membranes

Sashka Krumova; Zsuzsanna Várkonyi; Petar H. Lambrev; László Kovács; Svetla Todinova; Mira Busheva; Stefka G. Taneva; Győző Garab

The multisubunit pigment-protein complex of photosystem I (PSI) consists of a core and peripheral light-harvesting antenna (LHCI). PSI is thought to be a rather rigid system and very little is known about its structural and functional flexibility. Recent data, however, suggest LHCI detachment from the PSI supercomplex upon heat and light treatments. Furthermore, it was suggested that the splitting off of LHCI acts as a safety valve for PSI core upon photoinhibition (Alboresi et al., 2009). In this work we analyzed the heat- and light-induced reorganizations in isolated PSI vesicles (stroma membrane vesicles enriched in PSI). Using differential scanning calorimetry we revealed a stepwise disassembly of PSI supercomplex above 50°C. Circular dichroism, sucrose gradient centrifugation and 77K fluorescence experiments identified the sequence of events of PSI destabilization: 3min heating at 60°C or 40min white light illumination at 25°C resulted in pronounced Lhca1/4 detachment from the PSI supercomplex, which is then followed by the degradation of Lhca2/3. The similarity of the main structural effects due to heat and light treatments supports the notion that thermo-optic mechanism, structural changes induced by ultrafast local thermal transients, which has earlier been shown to be responsible for structural changes in the antenna system of photosystem II, can also regulate the assembly and functioning of PSI antenna.


Methods of Molecular Biology | 2004

Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions.

Ilian Simidjiev; Zsuzsanna Várkonyi; Petar H. Lambrev; Győző Garab

We describe the method of isolation of loosely stacked lamellar aggregates of LHCII that are capable of undergoing light-induced reversible structural changes, similar to those in granal thylakoid membranes (LHCII, the main chlorophyll a/b light-harvesting antenna complex of photosystem II). This unexpected structural flexibility of the antenna complexes depends largely on the lipid content that is retained during the isolation. As revealed by circular dichroism, in lipid-LHCII aggregates, the pigment-pigment interactions are very similar to those in the thylakoid membranes, while they differ significantly from those in solubilized trimers. The essence of the procedure is to adjust--for the plant material used--the proper conditions of detergent solubilization and purification that are mild enough for the associated lipids but provide sufficient purity. Microcrystals and most other LHCII preparations, which are more delipidated, are not capable of similar changes. The light-induced structural reorganizations can be enhanced by the addition of different thylakoid lipids, which--depending on the lipid species--also lead to the transformation of the lamellar structure. The preparation of different LHCII-lipid macro-assemblies is also described. Both in structurally flexible LHCII preparations and in thylakoids, the changes originate from a thermo-optic effect: fast local thermal transients, T-jumps, due to the dissipation of the (excess) excitation energy, which lead to elementary structural transitions in the close vicinity of the dissipating centers. This can occur because thylakoids and structurally flexible LHCII assemblies, but, e.g., not the microcrystals, exhibit a thermal instability below the denaturation temperature, and thus (local) heating leads to reorganizations without the loss of the molecular architecture of the constituents. We also list the main biochemical and biophysical techniques that can be used for testing the structural flexibility of LHCII, and discuss the potential physiological significance of the structural changes in light adaptation and photoprotection of plants.


Acta Physiologiae Plantarum | 2012

Comparative study on energy partitioning in photosystem II of two Arabidopsis thaliana mutants with reduced non-photochemical quenching capacity

Szilvia Bajkán; Zsuzsanna Várkonyi; Endre Lehoczki

Lhcb1-2 and PsbS proteins of photosystem II (PSII) have important roles in photoprotective thermal energy dissipation of the absorbed excess light energy. The light responses of chlorophyll fluorescence parameters were analyzed to examine how the absence of Lhcb1-2 or PsbS proteins can modify the energy allocation patterns of absorbed light energy in PSII using an antisense construct of lhcb2 and a psbS deletion (npq4-1) mutant of Arabidopsis thaliana. Both mutants exhibit reduced Stern–Volmer non-photochemical chlorophyll fluorescence quenching (NPQ). Here, we have adopted an approach, presented by Hendrickson et al. (Photosynth Res 82:73–81, 2004), to gain a better insight into the mechanism of the NPQ in these mutants. We have found no significant differences in the quantum yields of photochemical energy conversion (ΦPSII) between the mutants and the wild type. Nevertheless, as it was expected, the fraction of the energy, which is dissipated as heat via regulated pathways in PSII (ΦNPQ) for both mutants, were reduced as compared to the wild type. In a complementary way, the extent of non-regulated non-photochemical energy loss in PSII (ΦNO) for both mutants was significantly higher than that in the wild type. This reflects, together with the lower ΦNPQ (or NPQ) values, suboptimal capacity of photoprotective reactions at higher light intensities.

Collaboration


Dive into the Zsuzsanna Várkonyi's collaboration.

Top Co-Authors

Avatar

Zoltán Gombos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gyözö Garab

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László Kovács

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Petar H. Lambrev

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Győző Garab

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ottó Zsiros

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tibor Farkas

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mira Busheva

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

László Mustárdy

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge