Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zu-Hang Sheng is active.

Publication


Featured researches published by Zu-Hang Sheng.


Cell | 2008

Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation

Jian-Sheng Kang; Jin-Hua Tian; Ping-Yue Pan; Philip Zald; Cuiling Li; Chu-Xia Deng; Zu-Hang Sheng

Proper distribution of mitochondria within axons and at synapses is critical for neuronal function. While one-third of axonal mitochondria are mobile, a large proportion remains in a stationary phase. However, the mechanisms controlling mitochondrial docking within axons remain elusive. Here, we report a role for axon-targeted syntaphilin (SNPH) in mitochondrial docking through its interaction with microtubules. Axonal mitochondria that contain exogenously or endogenously expressed SNPH lose mobility. Deletion of the mouse snph gene results in a substantially higher proportion of axonal mitochondria in the mobile state and reduces the density of mitochondria in axons. The snph mutant neurons exhibit enhanced short-term facilitation during prolonged stimulation, probably by affecting calcium signaling at presynaptic boutons. This phenotype is fully rescued by reintroducing the snph gene into the mutant neurons. These findings demonstrate a molecular mechanism for controlling mitochondrial docking in axons that has a physiological impact on synaptic function.


Nature Neuroscience | 1999

Snapin: a SNARE–associated protein implicated in synaptic transmission

Jeffrey M. Ilardi; Sumiko Mochida; Zu-Hang Sheng

Synaptic vesicle docking and fusion are mediated by the assembly of a stable SNARE core complex of proteins, which include the synaptic vesicle membrane protein VAMP/synaptobrevin and the plasmalemmal proteins syntaxin and SNAP–25. We have now identified another SNAP–25–binding protein, called Snapin. Snapin was enriched in neurons and exclusively located on synaptic vesicle membranes. It associated with the SNARE complex through direct interaction with SNAP–25. Binding of recombinant Snapin–CT to SNAP–25 blocked the association of the SNARE complex with synaptotagmin. Introduction of Snapin–CT and peptides containing the SNAP–25 binding sequence into presynaptic superior cervical ganglion neurons in culture reversibly inhibited synaptic transmission. These results suggest that Snapin is an important component of the neurotransmitter release process through its modulation of the sequential interactions between the SNAREs and synaptotagmin.


Journal of Cell Biology | 2014

Mitochondrial trafficking and anchoring in neurons: New insight and implications

Zu-Hang Sheng

Mitochondria are essential organelles for neuronal growth, survival, and function. Neurons use specialized mechanisms to drive mitochondria transport and to anchor them in axons and at synapses. Stationary mitochondria buffer intracellular Ca2+ and serve as a local energy source by supplying ATP. The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Recent work has provided new insight in the regulation of microtubule-based mitochondrial trafficking and anchoring, and on how mitochondrial motility influences neuron growth, synaptic function, and mitophagy.


Current Biology | 2012

Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons

Qian Cai; Hesham Mostafa Zakaria; Anthony Simone; Zu-Hang Sheng

Mitochondria are essential for neuronal survival and function. Proper degradation of aged and damaged mitochondria through mitophagy is a key cellular pathway for mitochondrial quality control. Recent studies have indicated that PINK1/Parkin-mediated pathways ensure mitochondrial integrity and function. Translocation of Parkin to damaged mitochondria induces mitophagy in many nonneuronal cell types. However, evidence showing Parkin translocation in primary neurons is controversial, leaving unanswered questions as to how and where Parkin-mediated mitophagy occurs in neurons. Here, we report the unique process of dissipating mitochondrial Δψ(m)-induced and Parkin-mediated mitophagy in mature cortical neurons. Compared with nonneuronal cells, neuronal mitophagy is a much slower and compartmentally restricted process, coupled with reduced anterograde mitochondrial transport. Parkin-targeted mitochondria are accumulated in the somatodendritic regions where mature lysosomes are predominantly located. Time-lapse imaging shows dynamic formation and elimination of Parkin- and LC3-ring-like structures surrounding depolarized mitochondria through the autophagy-lysosomal pathway in the soma. Knocking down Parkin in neurons impairs the elimination of dysfunctional mitochondria. Thus, our study provides neuronal evidence for dynamic and spatial Parkin-mediated mitophagy, which will help us understand whether altered mitophagy contributes to pathogenesis of several major neurodegenerative diseases characterized by mitochondrial dysfunction and impaired transport.


Journal of Cell Biology | 2005

Syntabulin-mediated anterograde transport of mitochondria along neuronal processes

Qian Cai; Claudia Gerwin; Zu-Hang Sheng

In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin–kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.


Nature Cell Biology | 2001

Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex

Milan G. Chheda; Uri Ashery; Pratima Thakur; Jens Rettig; Zu-Hang Sheng

cAMP-dependent protein kinase A (PKA) can modulate synaptic transmission by acting directly on unknown targets in the neurotransmitter secretory machinery. Here we identify Snapin, a protein of relative molecular mass 15,000 that is implicated in neurotransmission by binding to SNAP-25, as a possible target. Deletion mutation and site-directed mutagenetic experiments pinpoint the phosphorylation site to serine 50. PKA-phosphorylation of Snapin significantly increases its binding to synaptosomal-associated protein-25 (SNAP-25). Mutation of Snapin serine 50 to aspartic acid (S50D) mimics this effect of PKA phosphorylation and enhances the association of synaptotagmin with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Furthermore, treatment of rat hippocampal slices with nonhydrolysable cAMP analogue induces in vivo phosphorylation of Snapin and enhances the interaction of both Snapin and synaptotagmin with the SNARE complex. In adrenal chromaffin cells, overexpression of the Snapin S50D mutant leads to an increase in the number of release-competent vesicles. Our results indicate that Snapin may be a PKA target for modulating transmitter release through the cAMP-dependent signal-transduction pathway.


Journal of Bioenergetics and Biomembranes | 1998

Physical Link and Functional Coupling of Presynaptic Calcium Channels and the Synaptic Vesicle Docking/Fusion Machinery

Zu-Hang Sheng; Ruth E. Westenbroek; William A. Catterall

N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both α1B and α1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 μM. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.


Neuron | 2010

Snapin-Regulated Late Endosomal Transport Is Critical for Efficient Autophagy-Lysosomal Function in Neurons

Qian Cai; Li Lu; Jin-Hua Tian; Yi-Bing Zhu; Haifa Qiao; Zu-Hang Sheng

Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis.


Nature Cell Biology | 2004

Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons

Qingning Su; Qian Cai; Claudia Gerwin; Carolyn L. Smith; Zu-Hang Sheng

Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor–cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin–syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.


The Journal of Neuroscience | 2007

Syntabulin–Kinesin-1 Family Member 5B-Mediated Axonal Transport Contributes to Activity-Dependent Presynaptic Assembly

Qian Cai; Ping-Yue Pan; Zu-Hang Sheng

The mechanism by which microtubule-based axonal transport regulates activity-dependent presynaptic plasticity in developing neurons remains mostly unknown. Our previous studies established that syntabulin is an adaptor capable of conjoining the kinesin family member 5B (KIF5B) motor and syntaxin-1. We now report that the complex of syntaxin-1–syntabulin–KIF5B mediates axonal transport of the active zone (AZ) components essential for presynaptic assembly. Syntabulin associates with AZ precursor carriers and colocalizes and comigrates with green fluorescent protein (GFP)-Bassoon-labeled AZ transport cargos within developing axons. Knock-down of syntabulin or disruption of the syntaxin-1–syntabulin–KIF5B complex impairs the anterograde transport of GFP-Bassoon out of the soma and reduces the axonal densities of synaptic vesicle (SV) clusters and FM4-64 [N-(3-triethylammoniumpropyl)-4-(p-dibutylaminostyryl)pyridinium, dibromide] loading. Furthermore, syntabulin loss of function results in a reduction in both the amplitude of postsynaptic currents and the frequency of asynchronous quantal events, and abolishes the activity-induced recruitment of new GFP-Bassoon into the axons and subsequent coclustering with SVs. Consequently, syntabulin loss of function blocks the formation of new presynaptic boutons during activity-dependent synaptic plasticity in developing neurons. These studies establish that a kinesin motor–adaptor complex is critical for the anterograde axonal transport of AZ components, thus contributing to activity-dependent presynaptic assembly during neuronal development.

Collaboration


Dive into the Zu-Hang Sheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuxiang Xie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Claudia Gerwin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mei Yao Lin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mei-Yao Lin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiu Tang Cheng

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge