Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zuhua Wang is active.

Publication


Featured researches published by Zuhua Wang.


Pharmaceutical Research | 2014

Near-Infrared Light-Sensitive Liposomes for the Enhanced Photothermal Tumor Treatment by the Combination with Chemotherapy

Jian You; Peizun Zhang; Fuqiang Hu; Yong-Zhong Du; Hong Yuan; Jiang Zhu; Zuhua Wang; Jialin Zhou; Chun Li

PurposeTo develop a near-infrared (NIR) light-sensitive liposome, which contains hollow gold nanospheres (HAuNS) and doxorubicin (DOX), and evaluate their potential utility for enhancing antitumor activity and controlling drug release.MethodsThe liposomes (DOX&HAuNS-TSL) were designed based on a thermal sensitive liposome (TSL) formulation, and hydrophobically modified HAuNS were attached onto the membrane of the liposomes. The behavior of DOX release from the liposomes was investigated by the dialysis, diffusion in agarose gel and cellular uptake of the drug. The biodistribution of DOX&HAuNS-TSL was assessed by i.v. injection in tumor-bearing nude mice. Antitumor efficacy was evaluated both histologically using excised tissue and intuitively by measuring the tumor size and weight.ResultsRapid and repetitive DOX release from the liposomes (DOX&HAuNS-TSL), could be readily achieved upon NIR laser irradiation. The treatment of tumor cells with DOX&HAuNS-TSL followed by NIR laser irradiation showed significantly greater cytotoxicity than the treatment with DOX&HAuNS-TSL alone, DOX-TSL alone (chemotherapy alone) and HAuNS-TSL plus NIR laser irradiation (Photothermal ablation, PTA, alone). In vivo antitumor study indicated that the combination of simultaneous photothermal and chemotherapeutic effect mediated by DOX&HAuNS-TSL plus NIR laser presented a significantly higher antitumor efficacy than the PTA alone mediated by HAuNS-TSL plus NIR laser irradiation.ConclusionsOur study could be as the valuable reference and direction for the clinical application of PTA in tumor therapy.


Biomaterials | 2013

Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres

Jian You; Zuhua Wang; Yong-Zhong Du; Hong Yuan; Peizun Zhang; Jialin Zhou; Fei Liu; Chun Li; Fuqiang Hu

It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.


ACS Applied Materials & Interfaces | 2016

Appropriate Size of Magnetic Nanoparticles for Various Bioapplications in Cancer Diagnostics and Therapy

Xiaomeng Guo; Zhe Wu; Wei Li; Zuhua Wang; Qingpo Li; Fenfen Kong; Hanbo Zhang; Xiuliang Zhu; Yiping P. Du; Yi Jin; Yong-Zhong Du; Jian You

The development of multifunctional nanoparticles has attracted increasing attention. The versatility of nanoparticles largely depends on their physiochemical properties (especially size). However, the optimized size range may be different for the bioapplications of each function associated with multifunctional nanoparticles. It is important to investigate every optimized size range to ascertain which size enables the best function of the nanoparticles before deciding their final size. In this work, we synthesized a series of monodisperse Fe3O4 nanoparticles with identical surface properties ranging in size from 60 to 310 nm and systematically investigated their biobehavior and application. Our data indicate that compared to their large counterparts, small Fe3O4 nanoparticles exhibited greater cellular internalization and deeper penetration into multicellular spheroids, thus enabling a higher photothermal ablation efficacy in vitro. Interestingly, larger Fe3O4 nanoparticles showed greater accumulation in tumors, thereby inducing more efficient tumor growth inhibition. In addition, 120 nm may be the optimal diameter of Fe3O4 nanoparticles for magnetic resonance imaging and photoacoustic tomography in vitro. However, more efficient in vivo imaging mediated by Fe3O4 nanoparticles will predominantly depend on their high accumulation. Our work presents a different appropriate size range for each biofunction of Fe3O4 nanoparticles, which could be a valuable reference for future nanoparticle design.


ACS Applied Materials & Interfaces | 2017

Gold Nanospheres-Stabilized Indocyanine Green as a Synchronous Photodynamic–Photothermal Therapy Platform That Inhibits Tumor Growth and Metastasis

Wei Li; Hanbo Zhang; Xiaomeng Guo; Zuhua Wang; Fenfen Kong; Lihua Luo; Qingpo Li; Chunqi Zhu; Jie Yang; Yan Lou; Yong-Zhong Du; Jian You

Both photothermal therapy (PTT) and photodynamic therapy (PDT) are phototherapeutic approaches, which have been widely investigated for cancer therapy mediated by an external light source. Here, a nanosystem presenting the synchronous PTT and PDT effect realized through one-step near-infrared (NIR) light irradiation is reported. This system was fabricated by conjugating indocyanine green (ICG) on hollow gold nanospheres (HAuNS) using branched-polyethylenimine (PEI, MW = 10 kDa) as optimal linker, which provided a high ICG payload as well as a covering layer with suitable thickness on HAuNS to maintain ICG fluorescence and reactive oxygen species (ROS) productivity. The resulting system (ICG-PEI-HAuNS) had the molar ratio of ICG:PEI:Au = 3:0.33:5. Compared with free ICG, ICG-PEI-HAuNS exhibited dramatically enhanced stability of ICG molecules and greater intratumoral accumulation. The conjugation of ICG caused significantly higher plasmon absorption of ICG-PEI-HAuNS in the NIR region compared with HAuNS alone, inducing remarkably enhanced photothermal conversion efficiency and synchronous photodynamic effect under NIR light irradiation. Interestingly, compared with PTT or PDT alone, synchronous PTT and PDT produced by ICG-PEI-HAuNS upon NIR light irradiation induced significantly stronger antitumor and metastasis inhibition effects both in vitro and in vivo, which might be a promising strategy for cancer treatment.


ACS Applied Materials & Interfaces | 2017

External Magnetic Field-Enhanced Chemo-Photothermal Combination Tumor Therapy via Iron Oxide Nanoparticles

Xiaomeng Guo; Wei Li; Lihua Luo; Zuhua Wang; Qingpo Li; Fenfen Kong; Hanbo Zhang; Jie Yang; Chunqi Zhu; Yong-Zhong Du; Jian You

The development of multifunctional nanoplatforms based on magnetic nanoparticles (MNPs) has attracted increasing attention. MNPs especially exhibit excellent responsiveness under the guidance of an external magnetic field (MF), resulting in tumor-specific, targeted delivery. The behavior and magnetic-targeting efficiency of MNPs largely depend on their physiochemical properties, especially the particle size; however, the optimal size range may vary across the multiple bioapplications associated with multifunctional nanoparticles. The optimal size range of nanoparticles for external MF-mediated targeted delivery has rarely been reported. In this work, we synthesized a series of monodisperse Fe3O4 nanoparticles with identical surface properties ranging in size from 10 to 310 nm, and we systematically investigated their behavior and MF-assisted antitumor efficacy. Our data indicated that smaller Fe3O4 nanoparticles exhibited greater cellular internalization, while larger Fe3O4 nanoparticles showed greater tumor accumulation. Larger Fe3O4 nanoparticles exhibited stronger magnetic responsiveness both in vitro and in vivo, which could be used to further induce increased accumulation of nanoparticles and their payload (e.g., doxorubicin) into the tumor site under the guidance of an external MF. Our work demonstrated that larger Fe3O4 nanoparticles, with a diameter of up to 310 nm, exhibited the best magnetic-targeting efficiency mediated by an external MF and the strongest antitumor efficacy from combination photothermal-chemotherapy. Our results could serve as a valuable reference for the future design of MNPs and their targeted delivery via the modulation of an external MF.


ACS Applied Materials & Interfaces | 2017

Specifically increased paclitaxel release in tumor and synergetic therapy by a hyaluronic acid-tocopherol nanomicelle

Hanbo Zhang; Wei Li; Xiaomeng Guo; Fenfen Kong; Zuhua Wang; Chunqi Zhu; Lihua Luo; Qingpo Li; Jie Yang; Yong-Zhong Du; Jian You

Recently, interest in tumor-targeted and site-specific drug release from nanoparticles as a means of drug delivery has increased. In this study, we report a smart nanosized micelle formed by hyaluronic acid (HA) conjugated with d-α-tocopherol succinate (TOS) using a disulfide bond as the linker (HA-SS-TOS, HSST). HSST micelles can specifically bind to the CD44 receptors that are overexpressed by cancer cells. The high levels of glutathione (GSH) in tumor cells selectively break the disulfide bond linker. This effect results in the synchronous release of the payload and a TOS fragment. These two components subsequently demonstrate synergetic anticancer activity. First, we demonstrate that drug release from HSST occurs rapidly in physiological high redox conditions and inside cancer cells. Significant GSH-triggered drug release was also observed in vivo. Furthermore, an in vivo biodistribution study indicated that the HSST micelles efficiently accumulated at the tumor sites, primarily due to an enhanced permeability and retention effect and the efficient binding to the cancer cells that overexpressed the CD44 receptor. Interestingly, the synchronous release of paclitaxel (PTX) and the TOS fragment from the PTX-loaded HSST caused synergetic tumor cell killing and tumor growth inhibition. Our work presents a useful candidate for a drug delivery system that can specifically accumulate at tumor tissue, selectively release its payload and a TOS fragment, and thus display a synergetic anticancer effect.


ACS Applied Materials & Interfaces | 2017

T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes

Chen-Ying Lu; Jiansong Ji; Xiuliang Zhu; Pei-feng Tang; Qian Zhang; Nan-nan Zhang; Zuhua Wang; Xiao-Juan Wang; Weiqian Chen; Jing-Bo Hu; Yong-Zhong Du; Ri-Sheng Yu

Nowadays, there is a high demand for supersensitive contrast agents for the early diagnostics of hepatocarcinoma. It has been recognized that accurate imaging information is able to be achieved by constructing hepatic tumor specific targeting probes, though it still faces challenges. Here, a AGKGTPSLETTP peptide (A54)-functionalized superparamagnetic iron oxide (SPIO)-loaded nanostructured lipid carrier (A54-SNLC), which can be specifically uptaken by hepatoma carcinoma cell (Bel-7402) and exhibited ultralow imaging signal intensity with varied Fe concentration on T2-weighted imaging (T2WI), was first prepared as an effective gene carrier. Then, an endogenous ferritin reporter gene for magnetic resonance imaging (MRI) with tumor-specific promoter (AFP-promoter) was designed, which can also exhibit a decrease in signal intensity on T2WI. At last, using protamine as a cationic mediator, novel ternary nanoparticle of A54-SNLC/protamine/DNA (A54-SNPD) as an active dual-target T2-weighted MRI contrast agent for imaging hepatic tumor was achieved. Owing to the synergistic effect of A54-SNLC and AFP-promoted DNA targeting with Bel-7402 cells, T2 imaging intensity values of hepatic tumors were successfully decreased via the T2 contrast enhancement of ternary nanoparticles. It is emphasized that the novel A54-SNPD ternary nanoparticle as active dual-target T2-weighted MRI contrast agent were able to greatly increase the diagnostic sensitivity and specificity of hepatic cancer.


Biomaterials | 2018

Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle

Chunqi Zhu; Hanbo Zhang; Wei Li; Lihua Luo; Xiaomeng Guo; Zuhua Wang; Fenfen Kong; Qingpo Li; Jie Yang; Yong-Zhong Du; Jian You

The treatment of metastatic cancer is a huge challenge at the moment. Highly precise targeting delivery and drug release in tumor have always been our pursuit in cancer therapy, especially to advance cancer with metastasis, for increasing the efficacy and biosafety. We established a smart nanosized micelle, formed by tocopherol succinate (TOS) conjugated hyaluronic acid (HA) using a disulfide bond linker. The micelle (HA-SS-TOS, HSST) can highly specifically bind with CD44 receptor over-expressed tumor, and response selectively to high GSH level in the cells, inducing disulfide bond breakage and the release of the payload (paclitaxel, PTX). To predict the antitumor efficacy of the micelles more clinically, we established an orthotopic colon cancer model with high metastasis rate, which could be visualized by the luciferase bioluminescence. Our data confirmed CD44 high expression in the colon cancer cells. Highly matching between the micellar fluorescence and bioluminescence of cancer cells in intestines demonstrated an exact recognition of our micelles to orthotopic colon tumor and its metastatic cells, attributing to the mediation of CD44 receptors. Furthermore, the fluorescence of the released Nile Red from the micelles was found only in the tumor and its metastatic cells, and almost completely overlapped with the bioluminescence of the cancer cells, indicating a highly selective drug release. Our micelles presented an excellent therapeutic effect against metastatic colon cancer, and induced significantly prolonged survival time for the mice, which might become a promising nanomedicine platform for the future clinical application against advanced cancers with high CD44 receptor expression.


Biomaterials | 2015

Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes

Qingpo Li; Qin Tang; Peizun Zhang; Zuhua Wang; Tiantian Zhao; Jialin Zhou; Hongrui Li; Qian Ding; Wei Li; Fuqiang Hu; Yong-Zhong Du; Hong Yuan; Shuqing Chen; Jian-Qing Gao; Jinbiao Zhan; Jian You


Nanoscale | 2015

Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications

Jialin Zhou; Zuhua Wang; Qingpo Li; Fei Liu; Yong-Zhong Du; Hong Yuan; Fuqiang Hu; Yinghui Wei; Jian You

Collaboration


Dive into the Zuhua Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge