Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zulmira Guerrero Marques Lacava is active.

Publication


Featured researches published by Zulmira Guerrero Marques Lacava.


Biophysical Journal | 2001

Magnetic Resonance of a Dextran-Coated Magnetic Fluid Intravenously Administered in Mice

L.M. Lacava; Zulmira Guerrero Marques Lacava; M.F. Da Silva; O. Silva; Sacha Braun Chaves; Ricardo Bentes Azevedo; F. Pelegrini; C. Gansau; N. Buske; Domagoj Sabolovic; P.C. Morais

Magnetic resonance was used to investigate the kinetic disposition of magnetite nanoparticles (9.4 nm core diameter) from the blood circulation after intravenous injection of magnetite-based dextran-coated magnetic fluid in female Swiss mice. In the first 60 min the time-decay of the nanoparticle concentration in the blood circulation follows the one-exponential (one-compartment) model with a half-life of (6.9 +/- 0.7) min. The X-band spectra show a broad single line at g approximately 2, typical of nanomagnetic particles suspended in a nonmagnetic matrix. The resonance field shifts toward higher values as the particle concentration reduces, following two distinct regimes. At the higher concentration regime (above 10(14) cm(-3)) the particle-particle interaction responds for the nonlinear behavior, while at the lower concentration regime (below 10(14) cm(-3)) the particle-particle interaction is ruled out and the system recovers the linearity due to the demagnetizing field effect alone.


Journal of Magnetism and Magnetic Materials | 1999

Biological effects of magnetic fluids: toxicity studies

Zulmira Guerrero Marques Lacava; Ricardo Bentes Azevedo; E.V. Martins; L.M. Lacava; Marina Freitas; V.A.P. Garcia; C.A. Rébula; A.P.C. Lemos; Maria henrique Sousa; F.A. Tourinho; M.F. Da Silva; P.C. Morais

Toxicity of ionic and citrate-based magnetic fluids administrated intraperitoneally to mice was investigated through cytogenetic analysis, evaluation of mitotic index and morphological and cytometric alterations. Both magnetic fluid samples cause severe inflammatory reactions, being very toxic and thus not biocompatible. Peritoneal cells and tissues studies may provide a useful strategy to investigate the in vivo biological effects of magnetic nanoparticles.


Journal of Magnetism and Magnetic Materials | 1999

Toxic effects of ionic magnetic fluids in mice

Zulmira Guerrero Marques Lacava; Ricardo Bentes Azevedo; L.M. Lacava; E.V. Martins; V.A.P. Garcia; C.A. Rébula; A.P.C. Lemos; M.H. Sousa; F.A. Tourinho; P.C. Morais; M.F. Da Silva

Abstract Toxicity of ionic and tartrate-based magnetic fluids administered intraperitoneally to mice was investigated through morphological and cytometric alterations and cytogenetic analysis. Both magnetic fluids cause cellular death, mutagenicity and severe inflammatory reactions, being very toxic and thus not biocompatible. Peritoneal cell and tissue studies may provide a useful strategy to investigate the in vivo biological effects of magnetic nanoparticles.


Journal of Antimicrobial Chemotherapy | 2009

Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis

André C. Amaral; Anamélia Lorenzetti Bocca; Alice Melo Ribeiro; Janayna Nunes; Danielle Lima Guedes Peixoto; Andreza R. Simioni; Fernando Lucas Primo; Zulmira Guerrero Marques Lacava; Ricardo Bentes; Ricardo Titze-de-Almeida; Antonio C. Tedesco; P.C. Morais; Maria Sueli Soares Felipe

OBJECTIVES The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. METHODS BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. RESULTS Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. CONCLUSIONS The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.


Mutation Research | 1994

Possible integration of Trypanosoma cruzi kDNA minicircles into the host cell genome by infection

Antonio R. L. Teixeira; Enrique Roberto Argañaraz; Lucio H. Freitas; Zulmira Guerrero Marques Lacava; Jaime M. Santana; Helena Luna

Infection with Trypanosoma cruzi is known to induce the division of peritoneal macrophages in BALB/c mice. We have demonstrated, by cytogenetic analysis, that accessory DNA elements are associated with the metaphase macrophage chromosomes of such infected macrophages. The identification of these accessory DNA elements with T. cruzi DNA is strongly supported by the association of 3H-label with some chromatids in macrophages previously infected with T. cruzi which had been labelled with 3H-methyl-thymidine. The karyotyping consistently showed preferential associations of T. cruzi DNA with chromosomes 3, 6 and 11. A conclusive demonstration of the parasite origin of the integrated DNA came from fluorescein in situ hybridization studies using specific parasite DNAs as probes. In order to determine the identity of the inserted DNA and to investigate the nature of the integration mechanism, Southern blot analyses were performed on DNA extracted from both uninfected and infected (but parasite-free) macrophages. Hybridizations of BamHI, EcoRI and TaqI digests of DNA from T. cruzi-infected host cells all revealed the presence of a 1.7-kb DNA fragment when probed with kDNA. The covalent association of kDNA with that of the host was confirmed by the fact that AluI and Hinf-I digests of DNA from infected host cells produced a number of bands, in a size range of 0.8-3.6 kb, which hybridized with kDNA minicircles. None of these bands was found in DNA purified from cell-free preparations of the parasite and thus it must be concluded that they represent insertion fragments between parasite and host cell DNA. These results strongly suggest that kDNA minicircles from T. cruzi have been integrated into the genome of the host cell following infection.


Journal of Magnetism and Magnetic Materials | 2001

Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

L.M. Lacava; B. M. Lacava; Ricardo Bentes Azevedo; Zulmira Guerrero Marques Lacava; N. Buske; A.L. Tronconi; P.C. Morais

Abstract Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (Dm) reduction of 20% and standard deviation (σ) increase of 15%. The differences in Dm and σ were associated with the AFM tip and the nanoparticle concentration on the substrate.


Journal of Magnetism and Magnetic Materials | 2002

A double-coated magnetite-based magnetic fluid evaluation by cytometry and genetic tests

Marina Freitas; Luciano P. Silva; Ricardo Bentes Azevedo; V.A.P. Garcia; L.M. Lacava; C.K. Grisólia; C.M. Lucci; P.C. Morais; M.F. Da Silva; N. Buske; Rui Curi; Zulmira Guerrero Marques Lacava

Abstract Magnetite nanoparticles pre-coated with dodecanoic acid and ethoxylated alcohol (DE) were used to obtain a physiologically stable magnetic fluid (DE–MF) sample. Three different doses of DE–MF were intraperitoneally applied to mice. Blood and peritoneum cytometry and micronucleus test were performed for 1–21 days after injection to investigate the DE–MF toxicity. Changes in cell population, peritoneum inflammation, and potential DE–MF genotoxic action were all time and dose dependent. At the lowest dose (5×1015 particles/kg), DE–MF seems to be useful as a drug precursor with both diagnostic and therapeutic values.


International Journal of Nanomedicine | 2011

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Luciana Landim Carneiro Estevanato; Débora De Oliveira Silva E Cintra; Nayara Baldini; Flávia Arruda Portilho; L.S. Barbosa; Olímpia Paschoal Martins; Bruno Marques Lacava; Ana Luisa Miranda-Vilela; Antonio C. Tedesco; Sônia Nair Báo; P.C. Morais; Zulmira Guerrero Marques Lacava

Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich’s tumors by the magnetohyperthermia procedure. Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed. Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS). Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.


Experimental Parasitology | 2013

Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice

Ricardo Fontoura de Carvalho; Ieler Ferreira Ribeiro; Ana Luisa Miranda-Vilela; José de Souza Filho; Olímpia Paschoal Martins; Débora de Oliveira Cintra e Silva; Antonio C. Tedesco; Zulmira Guerrero Marques Lacava; Sônia Nair Báo; Raimunda Nonata Ribeiro Sampaio

The major goal of this work was to design a new nanoparticle drug delivery system for desoxycholate amphotericin B (D-AMB), based on controlled particle size, looking for the most successful release of the active agents in order to achieve the best site-specific action of the drug at the therapeutically optimal rate and dose regimen. For this, AMB nanoencapsulated in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles (Nano-D-AMB) has been developed, and its efficacy was evaluated in the treatment of experimental cutaneous leishmaniasis in C57BL/6 mice, to test if our nano-drug delivery system could favor the reduction of the dose frequency required to achieve the same therapeutic level of free D-AMB, and so, an extended dosing interval. Magnetic citrate-coated maghemite nanoparticles were added to this nanosystem (Nano-D-AMB-MG) aiming to increase controlled release of AMB by magnetohyperthermia. Female mice (N=6/group) were infected intradermally in the right footpad with promastigotes of Leishmania amazonensis in the metacyclic phase, receiving the following intraperitoneal treatments: 1% PBS for 10 consecutive days; D-AMB at 2 mg/kg/day for 10 days (totalizing 20 mg/kg/animal); Nano-D-AMB and Nano-D-AMB-MG at 6 mg/kg on the 1st, 4th and 7th days and at 2 mg/kg on the 10th day, also totalizing 20 mg/kg/animal by treatment end. The Nano-D-AMB-MG group was submitted to an AC magnetic field, allowing the induction of magnetohyperthermia. The evaluations were through paw diameter measurements; parasite number and cell viability were investigated by limiting dilution assay. D-AMB-coated PLGA-DMSA nanoparticles showed the same efficacy as free D-AMB to reduce paw diameter; however, the Nano-D-AMB treatment also promoted a significantly greater reduction in parasite number and cell viability compared with free D-AMB. The nano-drug AMB delivery system appeared more effective than free D-AMB therapy to reduce the dose frequency required to achieve the same therapeutic level. It thus favors a longer interval between doses, as expected with development of a new nano drug delivery system, and may be useful in the treatment of many different pathologies, from cancer to neurodegenerative diseases.


Journal of Nanobiotechnology | 2013

Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

Marcella Lemos Brettas Carneiro; Raphael Cândido Apolinário Peixoto; Graziella Anselmo Joanitti; Ricardo G. Oliveira; Luís Augusto Muniz Telles; Ana Luisa Miranda-Vilela; Anamélia Lorenzetti Bocca; Leonora Maciel de Souza Vianna; Izabel Cristina Rodrigues da Silva; Aparecido Ribeiro de Souza; Zulmira Guerrero Marques Lacava; Sônia Nair Báo

BackgroundMagnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma.MethodsMice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry.ResultsRegarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining.ConclusionsIn summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite nanoparticles coated with rhodium (II) citrate. This treatment prolonged the survival period of treated mice without inducing apparent systemic toxicity, which strengthens its use for future breast cancer therapeutic applications.

Collaboration


Dive into the Zulmira Guerrero Marques Lacava's collaboration.

Top Co-Authors

Avatar

P.C. Morais

University of Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.M. Lacava

University of Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilia C. D. Lima

Universidade Federal de Goiás

View shared research outputs
Researchain Logo
Decentralizing Knowledge