Zunli Shen
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zunli Shen.
PLOS ONE | 2015
Zhangyin Liu; Yuqing Jin; Lulu Chen; Yang Wang; Xiaonan Yang; Jia Cheng; Wei Wu; Zuoliang Qi; Zunli Shen
Schwann cells (SCs) in animals exist in different developmental stages or wound repair phases, distinguished mainly by the expression of SC-specific markers. No study has yet determined SC state under in vitro culture conditions, and the specific markers expressed in SC are obscure as well. In this study, we harvested sciatic nerves from newborn mice and isolated SCs by an enzyme-digestion method, then we examined the expression profiles of ten markers (S100, p75NTR, Sox10, Sox2, GAP43, NCAM, Krox20, Oct6, MBP, and MPZ) at both the RNA and protein levels in in vitro mouse SCs and speculated their relation with in vivo SC stages. We assayed RNA and protein levels of SC specific markers by immunofluorescence, Western Blot, and real-time quantitative RT-PCR. The results show that the expression of most markers (S100, p75NTR, GAP43, NCAM, Krox20, Oct6, MBP and MPZ) was not detectable in all of early stage cultured SCs. The expression of transcription factors Sox10 and Sox2 was, however, detectable in all SCs. After 8 days, the positive expression rate of all markers except GAP43 and Oct6 was almost 100%.These results indicates Sox10 is a necessary marker for SC identification, while S100 is not reliable. SCs cultured in vitro express Sox2, P75NTR, NCAM, GAP43, Oct6, and MPZ, suggesting that they are similar to in vivo undifferentiated iSCs or dedifferentiated iSCs after nerve injury.
Biomaterials | 2013
Jinbao Qin; Kangan Li; Chen Peng; Xiangxiang Li; Jiaying Lin; Kaichuang Ye; Xinrui Yang; Qing-Song Xie; Zunli Shen; Yuqing Jin; Mier Jiang; Guixiang Zhang; Xinwu Lu
Adipose-derived stem cells (ADSCs) exhibit tremendous potential for repair of ischemic diseases. However, studies on the fate, migration, differentiation, and body distribution of the labeled ADSCs are rarely reported. In this study, magnetic iron oxide nanoparticles were designed, synthesized, and coated with meso-2,3-dimercaptosuccinic acid (DMSA) to produce DMSA nanoparticles (DMSA-NPs). The properties, size distribution, and characterization of DMSA-NPs were evaluated. Green fluorescent protein expressing ADSCs (GFP-ADSCs) were obtained and labeled with DMSA-NPs. The viability, cytotoxicity and multi-differentiation capacity of labeled GFP-ADSCs were evaluated in vitro. Labeled and non-labeled GFP-ADSCs were injected into a mouse model of hindlimb ischemia, and 3T magnetic resonance imaging (MRI) was acquired. The synthesized DMSA-NPs efficiently labeled the GFP-ADSCs in vitro and in vivo without affecting cell viability, proliferation, cell cycle, and multi-differentiation capacity. The MRI showed hypointense spots in the labeled GFP-ADSCs that lasted up to 8 weeks. Prussian blue staining and immunofluorescence assay at 4 and 8 weeks indicated that the labeled GFP-ADSCs were in and around the ischemic sites and some differentiated into capillaries. This observation is identical to that seen for transplants of unlabeled cells. Labeled cells were also identified mainly in the liver and spleen, with significantly smaller amounts in the lungs, intestines, heart, and kidney. Developed DMSA-NPs were shown to exhibit a considerable potential for use as nanoprobes for MRI of stem cells, which will enhance our understanding of cell-based therapeutic strategies for ischemic diseases.
Biomaterials | 2013
Xiao-Nan Yang; Yuqing Jin; Hui Bi; Wu Wei; Jia Cheng; Zhangyin Liu; Zunli Shen; Zuo-Liang Qi; Yilin Cao
Autologous tissues such as skeletal muscle have high biocampatibility and can effectively promote nerve regeneration compared to other biological and artificial materials; however, the reasonable and effective application of skeletal muscle requires further study. The purpose of this investigation was to assess the possibility of preparing a hollow nerve conduit, termed the epimysium conduit (EMC), using thin crimps of epimysium with skeletal muscle fibers and evaluate its effectiveness in repairing peripheral nerve defects. We prepared nerve conduits containing lumen with the external oblique muscle of the CAG-EFGP transgenic mice using microsurgical techniques for bridge repair of a 5-mm long sciatic nerve defect in wild-type mice. Systematic histological and functional assessments of the regenerated nerves were performed 8 and 12 weeks after surgery. EMC was found to effectively repair the sciatic nerve defect with significantly greater effectiveness than artificial conduits; however, the repair effect of EMC was lower than that of autologous nerve grafting for some parameters. In addition, our findings showed that some EMC-derived cell components migrated into the region of the regenerated nerves and contributed to reconstruction. Based on these findings, we conclude that a hollow conduit prepared with epimysium and a few skeletal muscle fibers is ideal for repairing peripheral nerve defects, and the cell components in the grafts contribute to nerve regeneration and structural remodeling, which provides an alternative option for the emergency primary repair of peripheral nerve defects in clinical practice.
Scientific Reports | 2017
Gangyang Wang; Lingling Cao; Yang Wang; Yingqi Hua; Zhengdong Cai; Jun Chen; Lulu Chen; Yuqing Jin; Lina Niu; Hua Shen; Yan Lu; Zunli Shen
Schwann cells (SCs) can promote the regeneration of injured peripheral nerves while the clinical application is limited by donor site complications and the inability to generate an ample amount of cells. In this study, we have isolated human eyelid adipose-derived Schwann cells (hE-SCs) from human eyelid adipose tissue and identified the cell phenotype and function. Using immunofluorescence and H & E staining, we detected subtle nerve fibers and SCs in human eyelid adipose tissue. Immunofluorescence staining indicated that hE-SCs expressed glial markers, such as S100, p75NTR GFAP, Sox10 and Krox20. To explore whether hE-SCs promote the regeneration of injured peripheral nerves in vivo, a Balb/c-nu mice model was used in the study, and mice were randomly assigned to five groups: Matrigel; hE-SCs/P0; hE-SCs/P2; hE-FLCs/P2; and Autograft. After 12 weeks, functional and histological assessments of the regenerated nerves showed that sciatic nerve defect was more effectively repaired in the hE-SCs/P2 group which achieved 66.1 ± 6.5% purity, than the other three groups and recovered to similar level to the Autograft group. These results indicated that hE-SCs can promote the regeneration of injured peripheral nerve and the abundant, easily accessible supply of adipose tissue might be a promising source of SCs for peripheral nerve repair.
International Journal of Biological Sciences | 2017
Yang Wang; Dong Li; Gangyang Wang; Lulu Chen; Jun Chen; Zhangyin Liu; Zhaofeng Zhang; Hua Shen; Yuqing Jin; Zunli Shen
Combinations of fibroblasts (Fbs) and corresponding epithelial cells have been widely used in many tissues, such as the skin and breast tissues, to augment tissue repair and remodeling. Recently, a large amount of new data has indicated that nerve Fbs play critical roles in Schwann cells (SCs) and axons in vitro. However, little is known regarding the effects of co-transplanting nerve Fbs and SCs on peripheral nerve repair in vivo. The aim of this study was to investigate the effect of co-transplanting sciatic nerve Fbs (SN-Fbs) and sciatic nerve SCs (SN-SCs) on nerve regeneration. We developed a 5 mm nerve-defect model in mice using a polyurethane (PUR) catheter and then injected one of four different mixtures of cells into the catheters to form the following four groups: pure Matrigel (Control group), SN-Fbs alone (SN-Fb group), SN-Fbs combined with SN-SCs at a ratio of 1:2 (Fb&SC group) and SN-SCs alone (SN-SC group). Histological and functional analyses were performed 3 months later. The results indicated that in vitro, the expression levels of NGF, BDNF and GDNF were significantly higher, and in vivo, a more moderate amount of extracellular matrix was produced in the Fb&SC group than in the SN-SC group. Compared to the other groups, co-transplanting SN-Fbs with SCs at a 1:2 ratio had significantly positive effects on nerve regeneration and functional recovery.
Neural Regeneration Research | 2012
Jiaxue Zhu; Jinbao Qin; Zunli Shen; James D. Kretlow; Xiaopan Wang; Zhangyin Liu; Yuqing Jin
In the present study, Schwann cells were isolated from the sciatic nerve of neonatal mice and purified using dispase and collagenase. Results showed that after the first round of purification with dispase, most of the Schwann cells appeared round in shape and floated in culture solution after 15 minutes. In addition, cell yield and cell purity were higher when compared to the collagenase group. After the second round of purification, the final cell yield for the dispase group was higher than that for the collagenase group, but no significant difference was found in cell purity. Moreover, similar results in cell quantity and purity were observed in adult Sprague-Dawley rats. These findings indicate that purification with dispase can result in the rapid isolation of Schwann cells with a high yield and purity.
Molecular Medicine Reports | 2017
Gangyang Wang; Zhengwen Ma; Lingling Cao; Guofeng Yan; Yang Wang; Yuqing Jin; Hua Shen; Yiping Zhang; Xiao Ming Xu; Xuejin Chen; Zunli Shen
Schwann cells (SCs) are indispensable for cell therapy and tissue engineering of the peripheral nervous system. Easy access to activated, highly proliferative SCs is necessary for clinical applications. The present study developed a fast, efficient method for obtaining highly purified SCs from the peripheral nerve of a mature Rhesus monkey. The common peroneal nerves of 4-year-old Rhesus monkeys were harvested and subjected to in vitro pre-degeneration in a modified SC culture medium (SCCM). The nerve pieces were subsequently treated enzymatically to dissociate the cells and then cultured for 2 days in SCCM. Cultured cells were treated with purification medium containing Ara-C to assist in restricting the overgrowth of fibroblast-like cells, for 24 h. After another 24-h cultivation period, the cells were subsequently treated with a multiplex collagenase, which enabled SC detachment over fibroblast detachment, and thereby facilitated SC isolation. Finally, SCs were cultured in SCCM. The cell yield was determined by cell counting following enzyme digestion and SC purity was determined from the percentage of SCs with respect to the total number of cells. Following purification, 96.3±3.9% of cells were identified as SCs. In vitro pre-degeneration in the presence of basic-fibroblast growth factor, heregulin β1 and forskolin maximized the purity and yield of SCs that could be obtained from monkey peroneal nerves. The present study identified a novel technique that can efficiently isolate and purify SCs from mature monkey nerves based on in vitro pre-degeneration.
Archive | 2011
Zunli Shen; Jiaxue Zhu; Jinbao Qin
Archive | 2011
Zunli Shen; Jinbao Qin; Jiaxue Zhu
Archive | 2011
Jiaxue Zhu; Zunli Shen; Jinbao Qin; Hua Shen; Zhaofeng Zhang