Zuoti Xie
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zuoti Xie.
ACS Nano | 2015
Zuoti Xie; Ioan Bâldea; Christopher E. Smith; Yanfei Wu; C. Daniel Frisbie
We report the results of an extensive investigation of metal-molecule-metal tunnel junctions based on oligophenylene dithiols (OPDs) bound to several types of electrodes (M1-S-(C6H4)n-S-M2, with 1 ≤ n ≤ 4 and M1,2 = Ag, Au, Pt) to examine the impact of molecular length (n) and metal work function (Φ) on junction properties. Our investigation includes (1) measurements by scanning Kelvin probe microscopy of electrode work function changes (ΔΦ = ΦSAM - Φ) caused by chemisorption of OPD self-assembled monolayers (SAMs), (2) measurements of junction current-voltage (I-V) characteristics by conducting probe atomic force microscopy in the linear and nonlinear bias ranges, and (3) direct quantitative analysis of the full I-V curves. Further, we employ transition voltage spectroscopy (TVS) to estimate the energetic alignment εh = EF - EHOMO of the dominant molecular orbital (HOMO) relative to the Fermi energy EF of the junction. Where photoelectron spectroscopy data are available, the εh values agree very well with those determined by TVS. Using a single-level model, which we justify via ab initio quantum chemical calculations at post-density functional theory level and additional UV-visible absorption measurements, we are able to quantitatively reproduce the I-V measurements in the whole bias range investigated (∼1.0-1.5 V) and to understand the behavior of εh and Γ (contact coupling strength) extracted from experiment. We find that Fermi level pinning induced by the strong dipole of the metal-S bond causes a significant shift of the HOMO energy of an adsorbed molecule, resulting in εh exhibiting a weak dependence with the work function Φ. Both of these parameters play a key role in determining the tunneling attenuation factor (β) and junction resistance (R). Correlation among Φ, ΔΦ, R, transition voltage (Vt), and εh and accurate simulation provide a remarkably complete picture of tunneling transport in these prototypical molecular junctions.
Applied Physics Letters | 2008
X. D. Gao; Jingmin Zhou; Zuoti Xie; Baofu Ding; You-Hua Qian; X. M. Ding; X. Y. Hou
A p-type doped organic layer combined with a hole-blocking layer has been experimentally demonstrated to serve as the charge generation unit in tandem-type organic light-emitting devices. The p-type layer functions as the source of both holes and electrons. Charge separation is explained by the tunneling model that the hole-blocking layer reduces the energy barrier for the electrons generated in the p-type layer to tunnel through into one light-emitting unit, while the holes generated in the p-type layer can transport to the other light-emitting unit easily under operation voltage.
Physical Review B | 2010
Baofu Ding; Yao Yao; X. Sun; X. D. Gao; Zuoti Xie; Zhengyi Sun; Zijun Wang; X. M. Ding; Y. Z. Wu; Xiaofeng Jin; Wallace C. H. Choy; Chang-Qin Wu; X. Y. Hou
Magnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of hole transporting material and electron transporting material. Theory based on Hubbard model fits experimental MEL well, which reveals two findings: (1) spin scattering and spin mixing, respectively, dominate MEL in low-field and high-field region. (2) Blended ratio, and thus the mobility, determines the value of the relative change in the EL in a given magnetic field. Finally successful prediction about the increase in singlet excitons in low field with little change in triplet exciton population further confirms the first finding.
ACS Nano | 2017
Zuoti Xie; Ioan Bâldea; Stuart Oram; Christopher E. Smith; C. Daniel Frisbie
The transport properties of molecular junctions based on alkanedithiols with three different methylene chain lengths were compared with junctions based on similar chains wherein every third -CH2- was replaced with O or S, that is, following the general formula HS(CH2CH2X)nCH2CH2SH, where X = CH2, O, or S and n = 1, 2, or 3. Conducting probe atomic force microscopy revealed that the low bias resistance of the chains increased upon substitution in the order CH2 < O < S. This change in resistance is ascribed to the observed identical trend in contact resistance, Rc, whereas the exponential prefactor β (length sensitivity) was essentially the same for all chains. Using an established, analytical single-level model, we computed the effective energy offset εh (i.e., Fermi level relative to the effective HOMO level) and the electronic coupling strength Γ from the current-voltage (I-V) data. The εh values were only weakly affected by heteroatom substitution, whereas the interface coupling strength Γ varied by over an order of magnitude. Consequently, we ascribe the strong variation in Rc to the systematic change in Γ. Quantum chemical calculations reveal that the HOMO density shifts from the terminal SH groups for the alkanedithiols to the heteroatoms in the substituted chains, which provides a plausible explanation for the marked decrease in Γ for the dithiols with electron-rich heteroatoms. The results indicate that the electronic coupling and thus the resistance of alkanedithiols can be tuned by substitution of even a single atom in the middle of the molecule. Importantly, when appropriately normalized, the experimental I-V curves were accurately simulated over the full bias range (±1.5 V) using the single-level model with no adjustable parameters. The data could be collapsed to a single universal curve predicted by the model, providing clear evidence that the essential physics is captured by this analytical approach and supporting its utility for molecular electronics.
Applied Physics Letters | 2009
Zuoti Xie; Wang Zhang; Baofu Ding; X. D. Gao; Y. T. You; Zhengyi Sun; X. M. Ding; X. Y. Hou
High-resolution synchrotron radiation photoemission spectroscopy was used to investigate the chemical properties of Al–LiF interfaces. An electronic state appeared at the Al/LiF interface with a binding energy 4.8 eV higher than that of the metallic Al 2p core level, but the state was hardly found to be present at the LiF/Al interface. This indicates that intensive chemical reaction could occur at the Al/LiF interface, while the reaction occurring at the LiF/Al interface would be weak. This result explains well the unsymmetrical electron injection from different sides of the symmetrical device of indium-tin-oxide\Al\LiF\tris(8-hydroxyquinoline) aluminum\LiF\Al showing unsymmetrical current-voltage characteristics.
Journal of the American Chemical Society | 2017
Zuoti Xie; Ioan Bâldea; Abel T. Demissie; Christopher E. Smith; Yanfei Wu; Greg Haugstad; C. Daniel Frisbie
Strong stochastic fluctuations witnessed as very broad resistance (R) histograms with widths comparable to or even larger than the most probable values characterize many measurements in the field of molecular electronics, particularly those measurements based on single molecule junctions at room temperature. Here we show that molecular junctions containing 80 oligophenylene dithiol molecules (OPDn, 1 ≤ n ≤ 4) connected in parallel display small relative statistical deviations-δR/R ≈ 25% after only ∼200 independent measurements-and we analyze the sources of these deviations quantitatively. The junctions are made by conducting probe atomic force microscopy (CP-AFM) in which an Au-coated tip contacts a self-assembled monolayer (SAM) of OPDs on Au. Using contact mechanics and direct measurements of the molecular surface coverage, the tip radius, tip-SAM adhesion force (F), and sample elastic modulus (E), we find that the tip-SAM contact area is approximately 25 nm2, corresponding to about 80 molecules in the junction. Supplementing this information with I-V data and an analytic transport model, we are able to quantitatively describe the sources of deviations δR in R: namely, δN (deviations in the number of molecules in the junction), δε (deviations in energetic position of the dominant molecular orbital), and δΓ (deviations in molecule-electrode coupling). Our main results are (1) direct determination of N; (2) demonstration that δN/N for CP-AFM junctions is remarkably small (≤2%) and that the largest contributions to δR are δε and δΓ; (3) demonstration that δR/R after only ∼200 measurements is substantially smaller than most reports based on >1000 measurements for single molecule break junctions. Overall, these results highlight the excellent reproducibility of junctions composed of tens of parallel molecules, which may be important for continued efforts to build robust molecular devices.
ACS Nano | 2011
Zuoti Xie; Tal Z. Markus; Gilad Gotesman; Zvicka Deutsch; Dan Oron; Ron Naaman
We investigated how isolated are the electronic states of the core in a core-shell (c/s) nanoparticles (NPs) from the surface, when the particles are self-assembled on Au substrates via a dithiol (DT) organic linker. Applying photoemission spectroscopy the electronic states of CdSe core only and CdSe/ZnS c/s NPs were compared. The results indicate that in the c/s NPs the HOMO interacts strongly with electronic states in the Au substrate and is pinned at the same energies, relative to the Fermi level, as the core only NPs. When the capping molecules of the NPs were replaced with thiolated molecules, an interaction between the thiol groups and the electronic states of the NPs was observed that depends on the properties of the NPs studied. Thiols binding to the NPs induce the formation of surface trap states. However, while for the core only CdSe NPs the LUMO states are strongly coupled to the surface traps, independent of their size, this coupling is size dependent in the case of the CdSe/ZnS c/s NPs. For a large core, the LUMO is decoupled from the surface trap states. When the core is small enough, the LUMO is delocalized and interacts with these states.
ACS Nano | 2016
Zuoti Xie; Sha Shi; Feilong Liu; D. L. Smith; P. Paul Ruden; C. Daniel Frisbie
We report room-temperature resistance changes of up to 30% under weak magnetic fields (0.1 T) for molecular tunnel junctions composed of oligophenylene thiol molecules, 1-2 nm in length, sandwiched between gold contacts. The magnetoresistance (MR) is independent of field orientation and the length of the molecule; it appears to be an interface effect. Theoretical analysis suggests that the source of the MR is a two-carrier (two-hole) interaction at the interface, resulting in spin coupling between the tunneling hole and a localized hole at the Au/molecule contact. Such coupling leads to significantly different singlet and triplet transmission barriers at the interface. Even weak magnetic fields impede spin relaxation processes and thus modify the ratio of holes tunneling via the singlet state versus the triplet state, which leads to the large MR. Overall, the experiments and analysis suggest significant opportunities to explore large MR effects in molecular tunnel junctions based on widely available molecules.
Journal of Applied Physics | 2009
Zuoti Xie; Baofu Ding; X. D. Gao; Y. T. You; Zhengyi Sun; Wang Zhang; X. M. Ding; X. Y. Hou
Synchrotron radiation photoemission study showed that the energy level alignment at the interface between N, N′-bis(naphthalene-1-y1)-N, N′-bis(phenyl) benzidine (NPB), a typical hole transport material, and Al could be adjusted by precovering a thin C60 layer on Al. The interface dipoles so formed could shift both the highest occupied molecular orbital level of NPB and the secondary electron cutoff measured at the early stage of the NPB deposition. The barrier height for hole injection from Al to NPB could thus be lowered by as much as 0.98 eV, and the optimal thickness of the inserted C60 layer was found to be 8–12 A.
Journal of Physical Chemistry Letters | 2018
S. Rodriguez-Gonzalez; Zuoti Xie; O. Galangau; P. Selvanathan; Lucie Norel; C. Van Dyck; Karine Costuas; C. D. Frisbie; Stéphane Rigaut; Jérôme Cornil
A central issue in molecular electronics in order to build functional devices is to assess whether changes in the electronic structure of isolated compounds by chemical derivatization are retained once the molecules are inserted into molecular junctions. Recent theoretical studies have suggested that this is not always the case due to the occurrence of pinning effects making the alignment of the transporting levels insensitive to the changes in the electronic structure of the isolated systems. We explore here this phenomenon by investigating at both the experimental and theoretical levels the I/ V characteristics of molecular junctions incorporating three different three-ring phenylene ethynylene derivatives designed to exhibit a significant variation of the HOMO level in the isolated state. At the theoretical level, our NEGF/DFT calculations performed on junctions including the three compounds show that, whereas the HOMO of the molecules varies by 0.61 eV in the isolated state, their alignment with respect to the Fermi level of the gold electrodes in the junction is very similar (within 0.1 eV). At the experimental level, the SAMs made of the three compounds have been contacted by a conducting AFM probe to measure their I/ V characteristics. The alignment of the HOMO with respect to the Fermi level of the gold electrodes has been deduced by fitting the I/ V curves, using a model based on a single-level description (Newns-Anderson model). The extracted values are found to be very similar for the three derivatives, in full consistency with the theoretical predictions, thus providing clear evidence for a HOMO level pinning effect.