Zurina Hassan
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zurina Hassan.
Neuroscience & Biobehavioral Reviews | 2013
Zurina Hassan; Mustapha Muzaimi; Visweswaran Navaratnam; Nurul H.M. Yusoff; Farah W. Suhaimi; Rajakumar Vadivelu; Balasingam Vicknasingam; Davide Amato; Stephan von Hörsten; Nurul Iman W. Ismail; Nanthini Jayabalan; Ammar Imad Hazim; Sharif Mahsufi Mansor; Christian P. Müller
Kratom (or Ketum) is a psychoactive plant preparation used in Southeast Asia. It is derived from the plant Mitragyna speciosa Korth. Kratom as well as its main alkaloid, mitragynine, currently spreads around the world. Thus, addiction potential and adverse health consequences are becoming an important issue for health authorities. Here we reviewed the available evidence and identified future research needs. It was found that mitragynine and M. speciosa preparations are systematically consumed with rather well defined instrumentalization goals, e.g. to enhance tolerance for hard work or as a substitute in the self-treatment of opiate addiction. There is also evidence from experimental animal models supporting analgesic, muscle relaxant, anti-inflammatory as well as strong anorectic effects. In humans, regular consumption may escalate, lead to tolerance and may yield aversive withdrawal effects. Mitragynine and its derivatives actions in the central nervous system involve μ-opioid receptors, neuronal Ca²⁺ channels and descending monoaminergic projections. Altogether, available data currently suggest both, a therapeutic as well as an abuse potential.
Molecules | 2010
Zurina Hassan; Mun Fei Yam; Mariam Ahmad; Ahmad Pauzi M. Yusof
Gynura procumbens (Lour.) Merr (family Compositae) is cultivated in Southeast Asia, especially Indonesia, Malaysia and Thailand, for medicinal purposes. This study evaluated the in vivo hypoglycemic properties of the water extract of G. procumbens following 14 days of treatment and in vitro in RIN-5F cells. Glucose absorption from the intestines and its glucose uptake in abdominal skeletal muscle were assessed. The antidiabetic effect of water extract of G. procumbens leaves was investigated in streptozotocin-induced diabetic rats. The intraperitoneal glucose tolerance test (IPGTT) was performed in diabetic rats treated with G. procumbens water extract for 14 days. In the IPGTT, blood was collected for insulin and blood glucose measurement. After the IPGTT, the pancreases were collected for immunohistochemical study of β-cells of the islets of Langerhans. The possible antidiabetic mechanisms of G. procumbens were assessed through in vitro RIN-5F cell study, intestinal glucose absorption and glucose uptake by muscle. The results showed that G. procumbens significantly decreased blood glucose levels after 14 days of treatment and improved outcome of the IPGTT. However, G. procumbens did not show a significant effect on insulin level either in the in vivo test or the in vitro RIN-5F cell culture study. G. procumbens also showed minimal effects on β-cells of the islets of Langerhans in the pancreas. However, G. procumbens only significantly increased glucose uptake by muscle tissues. From the findings we can conclude that G. procumbens water extract exerted its hypoglycemic effect by promoting glucose uptake by muscles.
Addiction Biology | 2016
Nurul H.M. Yusoff; Farah W. Suhaimi; Raja Vadivelu; Zurina Hassan; Anne Rümler; Andrea Rotter; Davide Amato; Hans C. Dringenberg; Sharif Mahsufi Mansor; Visweswaran Navaratnam; Christian P. Müller
Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of ‘herbal high’ preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti‐inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter‐ and dopamine receptor‐regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low‐frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
Brain Research Bulletin | 2016
Farah W. Suhaimi; Nurul H.M. Yusoff; Rahimah Hassan; Sharif Mahsufi Mansor; Visweswaran Navaratnam; Christian P. Müller; Zurina Hassan
Kratom or its main alkaloid, mitragynine is derived from the plant Mitragyna speciosa Korth which is indigenous to Southeast Asian countries. This substance has become widely available in other countries like Europe and United States due to its opium- and coca-like effects. In this article, we have reviewed available reports on mitragynine and other M. speciosa extracts. M. speciosa has been proven to have a rewarding effect and is effective in alleviating the morphine and ethanol withdrawal effects. However, studies in human revealed that prolonged consumption of this plant led to dependence and tolerance while cessation caused a series of aversive withdrawal symptoms. Findings also showed that M. speciosa extracts possess antinociceptive, anti-inflammatory, anti-depressant, and muscle relaxant properties. Available evidence further supports the adverse effects of M. speciosa preparations, mitragynine on cognition. Pharmacological activities are mainly mediated via opioid receptors as well as neuronal Ca2+ channels, expression of cAMP and CREB protein and via descending monoaminergic system. Physicochemical properties of mitragynine have been documented which may further explain the variation in pharmacological responses. In summary, current researchs on its main indole alkaloid, mitragynine suggest both therapeutic and addictive potential but further research on its molecular effects is needed.
Behavioural Brain Research | 2014
Thenmoly Damodaran; Zurina Hassan; Visweswaran Navaratnam; Mustapha Muzaimi; Gandi Ng; Christian P. Müller; Ping Liao; Hans C. Dringenberg
Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimers disease and vascular dementia.
Behavioural Brain Research | 2017
Nurul H.M. Yusoff; Sharif Mahsufi Mansor; Christian P. Müller; Zurina Hassan
&NA; Mitragynine is the main psychoactive ingredient of the herbal drug preparation Kratom (Ketum), derived from the plant Mitragyna speciosa. Kratom is a widely abused drug in Southeast Asian and has a psychostimulant profile at low‐medium doses, while high doses have opioidergic effects. Mitragynine was shown to possess opiate receptor affinity. However, its role in the behavioural effects of mitragynine is unclear. Here we asked whether the reinforcing effects of mitragynine are mediated by opiate receptors using a conditioned place preference (CPP) paradigm in rats. In the first experiment we tested the effects of the opiate receptor antagonist naloxone (0.1, 0.3 and 1.0 mg/kg) on the acquisition of mitragynine (10 mg/kg)‐induced CPP. In the second experiment, we tested the involvement of opiate receptors in the expression of mitragynine‐induced CPP in rats. We found that naloxone suppresses the acquisition of mitragynine‐induced CPP. This effect was already evident at a dose of naloxone (0.1 mg/kg) which, by itself, had no conditioned place aversion (CPA) effect. Higher doses of naloxone induced a CPA and blocked mitragynine‐induced CPP. In contrast, naloxone had no effect on the expression of mitragynine‐induced CPP. These findings suggest that the acquisition, but not the expression of the reinforcing effects of mitragynine is mediated by opiate receptors. HighlightsMitragynine is the main psychoactive ingredient of Kratom (Ketum).Kratom has an addiction potential and is widely abused in Southeast Asia.Mitrgaynine induces conditioned place preference (CPP) in rats.CPP acquisition, but not expression is blocked by naloxone, an opiate antagonist.The reinforcing action of mitragynine is opiate receptor dependent.
Frontiers in Psychiatry | 2017
Zurina Hassan; Oliver G. Bosch; Darshan Singh; Suresh Narayanan; B. Vicknasingam Kasinather; Erich Seifritz; Johannes Kornhuber; Boris B. Quednow; Christian P. Müller
A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug’s properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine (“Kratom”), synthetic cannabinoids (e.g., “Spice”), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
International Journal of Vascular Medicine | 2013
Nurul Maizan Manshor; Aidiahmad Dewa; Mohd. Zaini Asmawi; Zhari Ismail; Nadiah Razali; Zurina Hassan
Orthosiphon stamineus Benth has been traditionally used to treat hypertension. The study aimed to investigate the vascular reactivity of water extract (WOS) and water : methanolic (1 : 1) extract (WMOS) of Orthosiphon stamineus Benth and AT1 receptors blocker in the mechanisms of antihypertensive mediated by α 1-adrenergic receptor and EDNO and PGI2 releases in the SHR aortic rings. SHR (230–280 g) were divided into four groups: control, WOS, WMOS, and losartan. After being fed orally for 14 days, the aorta was harvested and subjected to PE (10−9 to 10−5 M) and ACh (10−9 to 10−5 M) with and without L-NAME (100 µM) and indomethacin (10 µM), respectively. WOS, WMOS, and losartan significantly reduced the contractile responses to PE intact suggesting the importance of endothelium in vasorelaxation. Losartan significantly enhanced the ACh-induced vasorelaxation. L-NAME significantly inhibited the ACh-induced relaxation in all groups. Indomethacin enhanced ACh-induced vasorelaxation in WMOS. Collectively, Orthosiphon stamineus leaves extract reduced vasoconstriction responses by the alteration of α 1-adrenergic and AT1 receptors activities. The involvement of EDNO releases was clearly observed in this plant. In WOS, PGI2 releases might not participate in the ACh-induced vasorelaxation. However, in WMOS, enhancement of vasorelaxation possibly due to continuous release of PGI2.
Behavioural Brain Research | 2018
Nurul H.M. Yusoff; Sharif Mahsufi Mansor; Christian P. Müller; Zurina Hassan
HighlightsBaclofen dose‐dependently attenuated the establishment of mitragynine‐induced conditioned place preference (CPP) in rats.Baclofen alone induced a CPP at a high dose and supressed locomotor activity.Baclofen dose‐dependently attenuated the expression of a mitragynine‐induced CPP. ABSTRACT Mitragynine is the major alkaloid found in the leaves of M. speciosa Korth (Rubiaceae), a plant that is native to Southeast Asia. This compound has been used, either traditionally or recreationally, due to its psychostimulant and opioid‐like effects. Recently, mitragynine has been shown to exert conditioned place preference (CPP), indicating the rewarding and motivational properties of M. speciosa. Here, the involvement of GABAB receptors in mediating mitragynine reward is studied using a CPP paradigm in rats. First, we examined the effects of GABAB receptor agonist baclofen (1.25, 2.5 and 5mg/kg) on the acquisition of mitragynine (10mg/kg)‐induced CPP. Second, the involvement of GABAB receptors in the expression of mitragynine‐induced CPP was tested. We found that the acquisition of mitragynine‐induced CPP could be blocked by higher doses (2.5 and 5mg/kg) of baclofen. Baclofen at a high dose inhibited locomotor activity and caused a CPP. Furthermore, we found that baclofen (2.5 and 5mg/kg) also blocked the expression of mitragynine‐induced CPP. These findings suggest that both, the acquisition and expression of mitragynine’s reinforcing properties is controlled by the GABAB receptor.
Journal of Ethnopharmacology | 2018
Thenmoly Damodaran; Byorn Wei Liang Tan; Ping Liao; Surash Ramanathan; Gin Keat Lim; Zurina Hassan
ETHNOPHARMACOLOGICAL RELEVANCE Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored. AIM OF THE STUDY To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model. MATERIALS AND METHODS Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia). RESULTS Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour. CONCLUSIONS Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimers disease (AD) patients.