Zvi Greenberg
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zvi Greenberg.
The EMBO Journal | 1992
Itai Bab; Dan Gazit; Michael Chorev; Andras Muhlrad; Arye Shteyer; Zvi Greenberg; M Namdar; A Kahn
It has been established that regenerating marrow induces an osteogenic response in distant skeletal sites and that this activity is mediated by factors released into the circulation by the healing tissue. In the present study we have characterized one of these factors, a 14 amino acid peptide named osteogenic growth peptide (OGP). Synthetic OGP, identical in structure to the native molecule, stimulates the proliferation and alkaline phosphatase activity of osteoblastic cells in vitro and increases bone mass in rats when injected in vivo. Immunoreactive OGP in high abundance is present physiologically in the serum, mainly in the form of an OGP‐OGP binding protein complex. A marked increase in serum bound and unbound OGP accompanies the osteogenic phase of post‐ablation marrow regeneration and associated systemic osteogenic response. Authentic OGP is identical to the C‐terminus of histone H4 and shares a five residue motif with a T‐cell receptor beta‐chain V‐region and the Bacillus subtilis outB locus. Since these latter proteins have not been implicated previously in the control of cell proliferation or differentiation, OGP may belong to a novel, heretofore unrecognized family of regulatory peptides. Perhaps more importantly, OGP appears to represent a new class of molecules involved in the systemic control of osteoblast proliferation and differentiation.
Biochemistry | 1996
Alessandro Bisello; Zvi Greenberg; Vered Behar; Michael Rosenblatt; Larry J. Suva; Michael Chorev
Parathyroid hormone (PTH) regulates calcium metabolism through a specific G protein-coupled, seven-transmembrane helix-containing receptor. This receptor also binds and is activated by PTH-related protein (PTHrP). The human (h) PTH/PTHrP receptor is a membrane glycoprotein with an apparent molecular weight of approximately 85000 which contains four putative N-glycosylation sites. To elucidate the functional role of receptor glycosylation, if any, we studied hormone binding and signal transduction in human embryonic kidney cells transfected with hPTH/PTHrP receptor (HEK-293/C-21). These cells stably express 300000-400000 receptors per cell. Inhibition of N-glycosylation with an optimized concentration of tunicamycin yielded completely nonglycosylated hPTH/PTHrP receptor (approximately 60 kDa). This receptor form is fully functional; it maintains nanomolar binding affinity for PTH- and PTHrP-derived agonists and antagonists. PTH and PTHrP agonists stimulate cyclic AMP accumulation and increases in cytosolic calcium levels. In addition, the highly potent benzophenone (pBz2)-containing PTH-derived radioligand [Nle8,18,Lys13(epsilon-pBz2),L-2-Nal23,Tyr34 3-125I)]bPTH(1-34)NH2 can photoaffinity cross-link specifically to the nonglycosylated receptor. The molecular weight (approximately 60000) of the band representing the photo-cross-linked, nonglycosylated receptor (obtained from the tunicamycin-treated HEK-293/C-21 cells) was similar to that of the deglycosylated photo-cross-linked receptor (obtained by enzymatic treatment with Endoglycosidase-F/N-glycosidase-F). Our findings indicate that glycosylation of the hPTH/PTHrP receptor is not essential for its effective expression on the plasma membrane or for the binding of ligands known to interact with the native receptor. The nonglycosylated hPTH/PTHrP receptor remains fully functional with regard to both of its known signal transduction pathways: cAMP-protein kinase A and phospholipase C-cytosolic calcium.
Biochimica et Biophysica Acta | 1993
Zvi Greenberg; Michael Chorev; Andras Muhlrad; Arye Shteyer; Malka Namdar; Nora Mansur; Itai Bab
We have recently reported the discovery of a 14-amino-acid osteogenic growth peptide (OGP). In vivo OGP increases bone formation and trabecular bone density. Physiologically it is found in serum complexed to an OGP binding protein (OGPBP). In vitro OGP has a biphasic effect on osteoblastic MC 3T3 E1 and fibroblastic NIH 3T3 cell proliferation; at low concentrations (0.01-1.0 and 1.0-100.0 pM, respectively) it is highly stimulatory with an inhibition at higher doses. To assess possibilities of labeling synthetic OGP to obtain radio- or fluorescent ligands, OGP analogues were extended at the N- or C-termini with Cys or Cys(S-NEtSucc) or the OGP Tyr-10 replaced by 3-I(Tyr). All analogues with N-terminal modifications, as well as the [Cys15]OGP-NH2 retained the OGP-like dose-dependent effect on proliferation of the MC 3T3 E1 and NIH 3T3 cells, although the magnitude of stimulation was lower, approx. 2/3 that of the native-like synthetic OGP. The [Cys15(S-NEtSucc)]OGP-NH2 and [3-I(Tyr10)]OGP shared only the inhibitory activity of OGP. This suppression is further shared by a number of other positively and negatively net charged, but not net neutral, peptides. Both N-terminal-modified analogues displayed a decreased binding activity to the OGPBP. All analogues except reverse OGP, [3-I(Tyr10)]OGP and [Cys15(S-NEtSucc)]OGP-NH2 reacted with anti-OGP antibodies. These data are not only important for labeling purposes but suggest a respective role for the OGP N-and C-terminal regions in binding to the OGPBP and putative OGP receptor. It appears that the OGP proliferative activity represents the net effect of stimulation specific to the OGP structure and nonspecific inhibition associated with the peptides high positive net charge.
Journal of Cellular Biochemistry | 1997
Zvi Greenberg; H. Gavish; Andras Muhlrad; Michael Chorev; Arye Shteyer; Malka Attar-Namdar; A. Tartakovsky; Itai Bab
The osteogenic growth peptide (OGP) was recently characterized in regenerating bone marrow. In experimental animals it increases osteogenesis and hemopoiesis. In stromal cell cultures OGP stimulates proliferation, alkaline phosphatase activity, and matrix mineralization. OGP in high abundance is present in normal human and animal serum mainly complexed to OGP binding protein (OGPBP) or proteins. Here we show the presence of two OGPBPs, OGPBP‐1, and OGPBP‐2, in cultures of osteoblastic MC3T3 E1 cells. Immunoreactive OGP (irOGP) also accumulates in the medium of these cultures and in cultures of NIH 3T3 fibroblasts. A large amount of irOGP was released by heat inactivation of OGPBP‐2 and purified by ultrafiltration and hydrophobic HPLC. The purified irOGP was identical to OGP obtained previously from rat regenerating bone marrow and human serum in terms of its amino acid sequence, immunoreactivity, and mitogenicity. Osteoblastic and fibroblastic cell proliferation can be arrested by anti‐OGP antibodies and rescued by exogenous OGP, indicating that in the absence of serum or other exogenous growth stimulators the endogenously produced OGP is both necessary and sufficient for baseline proliferation. The OGP production is up‐ and down‐regulated, respectively, by low and high doses and exogenous OGP in a manner consistent with an autoregulated feedback mechanism. The most effective OGP dose in MC3T3 E1 cells is at least two orders of magnitude lower than that in non‐osteoblastic cell systems. This differential sensitivity of the osteoblastic cells could result in a preferential anabolic effect of OGP in bone. J. Cell. Biochem. 65:359–367.
Biochemistry | 2000
Zvi Greenberg; Alessandro Bisello; Dale F. Mierke; and Michael Rosenblatt; Michael Chorev
The Journal of Clinical Endocrinology and Metabolism | 1995
Zvi Greenberg; Michael Chorev; Andras Muhlrad; Arye Shteyer; Malka Namdar-Attar; N Casap; A. Tartakovsky; Marina Vidson; Itai Bab
Journal of Peptide Research | 1999
Itai Bab; H. Gavish; Malka Namdar-Attar; Zvi Greenberg; Yuchen Chen; Nura Mansur; Andras Muhlrad; Arye Shteyer; Michael Chorev
Archive | 1990
Gideon A. Rodan; John W. Jacobs; Mohinder K. Sardana; Dan Gazit; Michael Chorev; Andras Muhlrad; Arye Shteyer; Nura Mansur; Zvi Greenberg; Shimon Slavin; Olga Gurevitch; Itai Bab
Biochemistry | 1997
Hanna Gavish; Itai Bab; Alexander Tartakovsky; Michael Chorev; Nora Mansur; Zvi Greenberg; Malka Namdar-Attar; Andras Muhlrad
Biochemistry | 1999
Gal Bitan; Lukas Scheibler; Zvi Greenberg; Michael Rosenblatt; Michael Chorev