Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zvi Kotler is active.

Publication


Featured researches published by Zvi Kotler.


Journal of Physics D | 2014

Laser sintering of copper nanoparticles

Michael Zenou; Oleg Ermak; Amir Sa'ar; Zvi Kotler

Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< × 3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits.


Scientific Reports | 2015

Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

Michael Zenou; A. Sa’ar; Zvi Kotler

Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.


Optics Express | 2016

Printing of metallic 3D micro-objects by laser induced forward transfer.

Michael Zenou; Zvi Kotler

Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.


Journal of Physics D | 2015

Digital laser printing of aluminum micro-structure on thermally sensitive substrates

Michael Zenou; Amir Sa’ar; Zvi Kotler

Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated.


Applied Physics Letters | 2015

Supersonic laser-induced jetting of aluminum micro-droplets

Michael Zenou; Amir Sa'ar; Zvi Kotler

The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.


Journal of Physics D | 2016

Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

Shoshana Winter; Michael Zenou; Zvi Kotler

We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.


Nanotechnology | 2016

Rapid laser sintering of metal nano-particles inks.

Oleg Ermak; Michael Zenou; Gil Bernstein Toker; Jonathan Ankri; Yosi Shacham-Diamand; Zvi Kotler

Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.


Nanotechnology | 2016

Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

Michael Zenou; Amir Sa'ar; Zvi Kotler

We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures.


Journal of Micromechanics and Microengineering | 2015

Integration of laser die transfer and magnetic self-assembly for ultra-thin chip placement

Emine Eda Kuran; Yuval Berg; Marcel Tichem; Zvi Kotler

In this paper, we demonstrate the integration of a novel self-assembly method with laser die transfer for ultra-thin chip (UTC) placement. The laser die transfer technique provides high speed chip presentation into the assembly positions on the substrate, where the magnetic self-assembly traps and aligns the chips. Combination of these two technologies allows handling of UTCs without a direct mechanical contact throughout the assembly flow and provides high precision chip placement.


Review of Scientific Instruments | 2000

Electric field induced second harmonic generation with and without fringes

G. Meshulam; G. Berkovic; Zvi Kotler; A. Sa’ar

Electric field induced second harmonic generation (EFISH) is a well-known technique to measure the first hyperpolarizability (β) of organic molecules in solution. The characteristic experimental output is observation of oscillatory fringes of second harmonic radiation as the solution path length is changed and evaluation of β from the fringe amplitude. We present two different cases where even in the absence of these characteristic fringes β may still be evaluated: first, when using absorbing materials, and second, when using broadband laser sources. The ability to determine β by EFISH under these conditions greatly enhances the ability of this technique to measure β values over a wide range of laser frequencies. Measurements of the same molecule’s β values at different frequencies are reported, verifying the two-level model for the dispersion of β.

Collaboration


Dive into the Zvi Kotler's collaboration.

Top Co-Authors

Avatar

Amir Sa'ar

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge