Zvi Peleg
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zvi Peleg.
Current Opinion in Plant Biology | 2011
Zvi Peleg; Eduardo Blumwald
Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.
Plant Biotechnology Journal | 2011
Zvi Peleg; Maria Reguera; Ellen Tumimbang; Harkamal Walia; Eduardo Blumwald
Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).
The Plant Cell | 2011
Elias Bassil; Masa-aki Ohto; Tomoya Esumi; Hiromi Tajima; Zhu Zhu; Olivier Cagnac; Mark Belmonte; Zvi Peleg; Toshio Yamaguchi; Eduardo Blumwald
This work demonstrates that two members of the Arabidopsis Na+/H+ antiporter family, NHX5 and NHX6, are critical for normal plant growth and response to stress. Experiments show that the two proteins localize to trafficking endosomal vesicles and demonstrate that NHX5 and NHX6 are required for endosomal trafficking to the vacuole. Intracellular Na+/H+ antiporters (NHXs) play important roles in cellular pH and Na+ and K+ homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.
Biochimica et Biophysica Acta | 2012
Maria Reguera; Zvi Peleg; Eduardo Blumwald
Abiotic stress conditions are the major limitations in modern agriculture. Although many genes associated with plant response(s) to abiotic stresses have been indentified and used to generate stress tolerant plants, the success in producing stress-tolerant crops is limited. New technologies are providing opportunities to generate stress tolerant crops. Biotechnological approaches that emphasize the development of transgenic crops under conditions that mimic the field situation and focus on the plant reproductive stage will significantly improve the opportunities of producing stress tolerant crops. Here, we highlight recent advances and discuss the limitations that hinder the fast integration of transgenic crops into agriculture and suggest possible research directions. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Plant Cell and Environment | 2009
Zvi Peleg; Tzion Fahima; Tamar Krugman; Shahal Abbo; Dan Yakir; Abraham B. Korol; Yehoshua Saranga
Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0-35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars.
Plant Physiology | 2013
Maria Reguera; Zvi Peleg; Yasser M. Abdel-Tawab; Ellen Tumimbang; Carla Andréa Delatorre; Eduardo Blumwald
Cytokinin enhances the capacity of plants to tolerate water deficit by improving carbon and nitrogen assimilation processes during stress. The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic PSARK::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic PSARK::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.
Science | 2017
Raz Avni; Moran Nave; Omer Barad; Kobi Baruch; Sven O. Twardziok; Heidrun Gundlach; Iago Hale; Martin Mascher; Manuel Spannagl; Krystalee Wiebe; Katherine W. Jordan; Jasline Deek; Batsheva Ben-Zvi; Gil Ben-Zvi; Axel Himmelbach; Ron MacLachlan; Andrew G. Sharpe; Allan K. Fritz; Roi Ben-David; Hikmet Budak; Tzion Fahima; Abraham B. Korol; Justin D. Faris; Alvaro G. Hernandez; Mark A. Mikel; Avraham A. Levy; Brian J. Steffenson; Marco Maccaferri; Roberto Tuberosa; Luigi Cattivelli
Genomics and domestication of wheat Modern wheat, which underlies the diet of many across the globe, has a long history of selection and crosses among different species. Avni et al. used the Hi-C method of genome confirmation capture to assemble and annotate the wild allotetraploid wheat (Triticum turgidum). They then identified the putative causal mutations in genes controlling shattering (a key domestication trait among cereal crops). They also performed an exome capture–based analysis of domestication among wild and domesticated genotypes of emmer wheat. The findings present a compelling overview of the emmer wheat genome and its usefulness in an agricultural context for understanding traits in modern bread wheat. Science, this issue p. 93 A polyploid wheat genome assembly elucidates wheat domestication history. Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat’s domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.
Journal of Experimental Botany | 2011
Zvi Peleg; Tzion Fahima; Abraham B. Korol; Shahal Abbo; Yehoshua Saranga
Wheat is undoubtedly one of the worlds major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.
Annals of Botany | 2010
Merav Chatzav; Zvi Peleg; Levent Ozturk; Atilla Yazici; Tzion Fahima; Ismail Cakmak; Yehoshua Saranga
BACKGROUND AND AIMS Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. METHODS A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. KEY RESULTS Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. CONCLUSIONS Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.
Archive | 2011
Zvi Peleg; Maris P. Apse; Eduardo Blumwald
Abiotic stress is the primary cause of crop plant yield losses worldwide. Drought and salinity stress are the major environmental challenges faced by agriculture. Improving yield production and stability under stressful environments is needed to fulfil the food demand of the ever-growing world population. Numerous genes associated to plant response(s) to drought and salinity stress have been identified and characterized, in most cases, in the model plant Arabidopsis. However, while many of these genes are potential candidates for improving tolerance to abiotic stress, only a small proportion were transferred into crop plants. Further, transgenic crop plants overexpressing the genes of interest were, in most cases, tested under artificial conditions in the laboratory or controlled greenhouse. Thus, while many reports on drought and salinity tolerance in transgenic plants have been published, there is urgent need to test these traits under field conditions. In this chapter, we discuss recent advances in engineering drought and salinity tolerance in crop plants with emphasis on yield and the needs to close the gaps between the laboratory and the field conditions.Abiotic stress is the primary cause of crop plant yield losses worldwide. Drought and salinity stress are the major environmental challenges faced by agriculture. Improving yield production and stability under stressful environments is needed to fulfil the food