Zygmunt Galdzicki
Uniformed Services University of the Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zygmunt Galdzicki.
Nature | 2009
Kwan-Hyuck Baek; Alexander Zaslavsky; Ryan C. Lynch; Carmella Britt; Yoshiaki Okada; M. William Lensch; In-Hyun Park; Sam S. Yoon; Takashi Minami; Julie R. Korenberg; Judah Folkman; George Q. Daley; William C. Aird; Zygmunt Galdzicki; Sandra Ryeom
The incidence of many cancer types is significantly reduced in individuals with Down’s syndrome, and it is thought that this broad cancer protection is conferred by the increased expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is Down’s syndrome candidate region-1 (DSCR1, also known as RCAN1), which encodes a protein that suppresses vascular endothelial growth factor (VEGF)-mediated angiogenic signalling by the calcineurin pathway. Here we show that DSCR1 is increased in Down’s syndrome tissues and in a mouse model of Down’s syndrome. Furthermore, we show that the modest increase in expression afforded by a single extra transgenic copy of Dscr1 is sufficient to confer significant suppression of tumour growth in mice, and that such resistance is a consequence of a deficit in tumour angiogenesis arising from suppression of the calcineurin pathway. We also provide evidence that attenuation of calcineurin activity by DSCR1, together with another chromosome 21 gene Dyrk1a, may be sufficient to markedly diminish angiogenesis. These data provide a mechanism for the reduced cancer incidence in Down’s syndrome and identify the calcineurin signalling pathway, and its regulators DSCR1 and DYRK1A, as potential therapeutic targets in cancers arising in all individuals.
Neuropharmacology | 1999
Elaine J. Carlson; Charles J. Epstein; Andrea Balbo; Stanley I. Rapoport; Zygmunt Galdzicki
Long-term potentiation (LTP) and depression (LTD) were investigated in hippocampus of a genetic model of Down syndrome, the segmental trisomy (Ts65Dn) mouse. Field excitatory postsynaptic potentials were recorded from hippocampal slices and LTP and LTD evoked sequentially. LTP decreased whereas LTD increased significantly in Ts65Dn compared with control hippocampus.
The Journal of Neuroscience | 2007
Lina Chakrabarti; Zygmunt Galdzicki; Tarik F. Haydar
Trisomy 21, one of the most prevalent congenital birth defects, results in a constellation of phenotypes collectively termed Down syndrome (DS). Mental retardation and motor and sensory deficits are among the many debilitating symptoms of DS. Alterations in brain growth and synaptic development are thought to underlie the cognitive impairments in DS, but the role of early brain development has not been studied because of the lack of embryonic human tissue and because of breeding difficulties in mouse models of DS. We generated a breeding colony of the Ts65Dn mouse model of DS to test the hypothesis that early defects in embryonic brain development are a component of brain dysfunction in DS. We found substantial delays in prenatal growth of the Ts65Dn cerebral cortex and hippocampus because of longer cell cycle duration and reduced neurogenesis from the ventricular zone neural precursor population. In addition, the Ts65Dn neocortex remains hypocellular after birth and there is a lasting decrease in synaptic development beginning in the first postnatal week. These results demonstrate that specific abnormalities in embryonic forebrain precursor cells precede early deficits in synaptogenesis and may underlie the postnatal disabilities in Ts65Dn and DS. The early prenatal period is therefore an important new window for possible therapeutic amelioration of the cognitive symptoms in DS.
Nature Neuroscience | 2010
Lina Chakrabarti; Tyler K. Best; Nathan P. Cramer; Rosalind S. E. Carney; John T. R. Isaac; Zygmunt Galdzicki; Tarik F. Haydar
Over-inhibition is thought to be one of the underlying causes of the cognitive deficits in Ts65Dn mice, the most widely used model of Down syndrome. We found a direct link between gene triplication and defects in neuron production during embryonic development. These neurogenesis defects led to an imbalance between excitatory and inhibitory neurons and to increased inhibitory drive in the Ts65Dn forebrain. We discovered that Olig1 and Olig2, two genes that are triplicated in Down syndrome and in Ts65Dn mice, were overexpressed in the Ts65Dn forebrain. To test the hypothesis that Olig triplication causes the neurological phenotype, we used a genetic approach to normalize the dosage of these two genes and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain. These data identify seminal alterations during brain development and suggest a mechanistic relationship between triplicated genes and these brain abnormalities in the Ts65Dn mouse.
Neuropharmacology | 2005
Angela J. Villar; Charles J. Epstein; Zygmunt Galdzicki
Due to the homology between human chromosome 21 and mouse chromosome 16, trisomy 16 mice are considered animal models of Down syndrome (DS). Abnormal hippocampal synaptic plasticity and behavior have been reported in the segmental trisomy 16 Ts65Dn mouse. In the Ts1Cje DS mouse model, which has a shorter triplicated chromosomal segment than Ts65Dn, more subtle hippocampal behavioral deficits have been reported. In this study, we investigated CA1 hippocampal synaptic plasticity, long-term potentiation (LTP) and depression (LTD) in the Ts1Cje mouse. Field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 area of in vitro hippocampal slices from the Ts1Cje mouse and diploid controls, LTP was induced by a single tetanizing train pulse (1 s) at 100 Hz and LTD by a 900-pulse train at 1 Hz. We report for the first time that compared to diploid controls, the hippocampus from the Ts1Cje mouse had a smaller LTP and an increased LTD. The changes are less dramatic than had been reported previously for the Ts65Dn mouse. Furthermore, in the Ts1Cje mouse trains of pulses at both 20 Hz and 100 Hz produced a decrease in the evoked fEPSPs over the length of the train in comparison to diploid fEPSPs. These findings suggest that genes from Ts1Cje chromosome, including GIRK2 potassium channel, contribute to abnormal short- and long-term plasticity.
Journal of Neurochemistry | 2006
Angelina Kline-Burgess; Madelaine Cho; Andrea Balbo; Tyler K. Best; Chie Harashima; Eric Klann; Zygmunt Galdzicki
The Ts65Dn mouse model of Down syndrome (DS) has an extra segment of chromosome (Chr.) 16 exhibits abnormal behavior, synaptic plasticity and altered function of several signaling molecules. We have further investigated signaling pathways that may be responsible for the impaired hippocampal plasticity in the Ts65Dn mouse. Here we report that calcium/calmodulin‐dependent protein kinaseu2003II (CaMKII), phosphatidylinositolu20033‐kinase (PI3K)/Akt, extracellular signal‐regulated kinase (ERK), protein kinaseu2003A (PKA) and protein kinaseu2003C (PKC), all of which have been shown to be involved in synaptic plasticity, are altered in the Ts65Dn hippocampus. We found that the phosphorylation of CaMKII and protein kinase Akt was increased, whereas ERK was decreased. Activities of PKA and PKC were decreased. Furthermore, abnormal PKC activity and an absence of the increase in Akt phosphorylation were demonstrated in the Ts65Dn hippocampus after high‐frequency stimulation that induces long‐term potentiation. Our findings suggest that abnormal synaptic plasticity in the Ts65Dn hippocampus is the result of compensatory alterations involving the glutamate receptor subunit GluR1 in either one or more of these signaling cascades caused by the expression of genes located on the extra segment of Chr.u200316.
The Journal of Comparative Neurology | 2006
Chie Harashima; David M. Jacobowitz; Jassir Witta; Rosemary C. Borke; Tyler K. Best; Zygmunt Galdzicki
Ts65Dn, a mouse model of Down syndrome (DS), demonstrates abnormal hippocampal synaptic plasticity and behavioral abnormalities related to spatial learning and memory. The molecular mechanisms leading to these impairments have not been identified. In this study, we focused on the G‐protein‐activated inwardly rectifying potassium channel 2 (GIRK2) gene that is highly expressed in the hippocampus region. We studied the expression pattern of GIRK subunits in Ts65Dn and found that GIRK2 was overexpressed in all analyzed Ts65Dn brain regions. Interestingly, elevated levels of GIRK2 protein in the Ts65Dn hippocampus and frontal cortex correlated with elevated levels of GIRK1 protein. This suggests that heteromeric GIRK1‐GIRK2 channels are overexpressed in Ts65Dn hippocampus and frontal cortex, which could impair excitatory input and modulate spike frequency and synaptic kinetics in the affected regions. All GIRK2 splicing isoforms examined were expressed at higher levels in the Ts65Dn in comparison to the diploid hippocampus. The pattern of GIRK2 expression in the Ts65Dn mouse brain revealed by in situ hybridization and immunohistochemistry was similar to that previously reported in the rodent brain. However, in the Ts65Dn mouse a strong immunofluorescent staining of GIRK2 was detected in the lacunosum molecular layer of the CA3 area of the hippocampus. In addition, tyrosine hydroxylase containing dopaminergic neurons that coexpress GIRK2 were more numerous in the substantia nigra compacta and ventral tegmental area in the Ts65Dn compared to diploid controls. In summary, the regional localization and the increased brain levels coupled with known function of the GIRK channel may suggest an important contribution of GIRK2 containing channels to Ts65Dn and thus to DS neurophysiological phenotypes. J. Comp. Neurol. 494:815–833, 2006. Published 2005 Wiley‐Liss, Inc.
Frontiers in Psychiatry | 2013
Jennifer A. Rusiecki; Celia Byrne; Zygmunt Galdzicki; Vasantha Srikantan; Ligong Chen; Matthew Poulin; Liying Yan; Andrea Baccarelli
Background: The underlying molecular mechanisms of PTSD are largely unknown. Distinct expression signatures for PTSD have been found, in particular for immune activation transcripts. DNA methylation may be significant in the pathophysiology of PTSD, since the process is intrinsically linked to gene expression. We evaluated temporal changes in DNA methylation in select promoter regions of immune system-related genes in U.S. military service members with a PTSD diagnosis, pre- and post-diagnosis, and in controls. Methods: Cases (nu2009=u200975) had a post-deployment diagnosis of PTSD in their medical record. Controls (nu2009=u200975) were randomly selected service members with no PTSD diagnosis. DNA was extracted from pre- and post-deployment sera. DNA methylation (%5-mC) was quantified at specific CpG sites in promoter regions of insulin-like growth factor 2 (IGF2), long non-coding RNA transcript H19, interleukin-8 (IL8), IL16, and IL18 via pyrosequencing. We used multivariate analysis of variance and generalized linear models to calculate adjusted means (adjusted for age, gender, and race) to make temporal comparisons of %5-mC for cases (pre- to post-deployment) versus controls (pre- to post-deployment). Results: There were significant differences in the change of %5-mC pre- to post-deployment between cases and controls for H19 (cases: +0.57%, controls: −1.97%; pu2009=u20090.04) and IL18 (cases: +1.39%, controls: −3.83%; pu2009=u20090.01). For H19 the difference was driven by a significant reduction in %5-mC among controls; for IL18 the difference was driven by both a reduction in %5-mC among controls and an increase in %5-mC among cases. Stratified analyses revealed more pronounced differences in the adjusted means of pre-post H19 and IL18 methylation differences for cases versus controls among older service members, males, service members of white race, and those with shorter deployments (6–12u2009months). Conclusion: In the study of deployed personnel, those who did not develop PTSD had reduced %5-mC levels of H19 and IL18 after deployment, while those who did develop PTSD had increased levels of IL18. Additionally, pre-deployment the people who later became cases had lower levels of IL18 %5-mC compared with controls. These findings are preliminary and should be investigated in larger studies.
Advances in pharmacology (San Diego) | 2010
Nathan P. Cramer; Tyler K. Best; Marcus Stoffel; Zygmunt Galdzicki
Down syndrome (DS) results from the presence of an extra copy of genes on the long-arm of chromosome 21. Aberrant expression of these trisomic genes leads to widespread neurological changes that vary in their severity. However, how the presence of extra genes affects the physiological and behavioral phenotypes associated with DS is not well understood. The most likely cause of the complex DS phenotypes is the overexpression of dosage-sensitive genes. However, other factors, such as the complex interactions between gene products as proteins and noncoding RNAs, certainly play significant roles contributing to the spectrum of severity. Here we will review evidence regarding how the overexpression of one particular gene encoding for G-protein-activated inward rectifying potassium type 2 (GIRK2) channel subunit and its coupling to GABA(B) receptors may contribute to a range of mental and functional disabilities in DS.
Neuron | 2016
Jose Luis Olmos-Serrano; Hyo Jung Kang; William A. Tyler; John Silbereis; Feng Cheng; Ying Zhu; Mihovil Pletikos; Lucija Jankovic-Rapan; Nathan P. Cramer; Zygmunt Galdzicki; Joseph W. Goodliffe; Alan Peters; Claire Sethares; Ivana Delalle; Jeffrey A. Golden; Tarik F. Haydar; Nenad Sestan
Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.