Featured Researches

Computer Vision And Pattern Recognition

Deep Online Fused Video Stabilization

We present a deep neural network (DNN) that uses both sensor data (gyroscope) and image content (optical flow) to stabilize videos through unsupervised learning. The network fuses optical flow with real/virtual camera pose histories into a joint motion representation. Next, the LSTM block infers the new virtual camera pose, and this virtual pose is used to generate a warping grid that stabilizes the frame. Novel relative motion representation as well as a multi-stage training process are presented to optimize our model without any supervision. To the best of our knowledge, this is the first DNN solution that adopts both sensor data and image for stabilization. We validate the proposed framework through ablation studies and demonstrated the proposed method outperforms the state-of-art alternative solutions via quantitative evaluations and a user study.

Read more
Computer Vision And Pattern Recognition

Deep Photo Scan: Semi-supervised learning for dealing with the real-world degradation in smartphone photo scanning

Physical photographs now can be conveniently scanned by smartphones and stored forever as a digital version, but the scanned photos are not restored well. One solution is to train a supervised deep neural network on many digital photos and the corresponding scanned photos. However, human annotation costs a huge resource leading to limited training data. Previous works create training pairs by simulating degradation using image processing techniques. Their synthetic images are formed with perfectly scanned photos in latent space. Even so, the real-world degradation in smartphone photo scanning remains unsolved since it is more complicated due to real lens defocus, lighting conditions, losing details via printing, various photo materials, and more. To solve these problems, we propose a Deep Photo Scan (DPScan) based on semi-supervised learning. First, we present the way to produce real-world degradation and provide the DIV2K-SCAN dataset for smartphone-scanned photo restoration. Second, by using DIV2K-SCAN, we adopt the concept of Generative Adversarial Networks to learn how to degrade a high-quality image as if it were scanned by a real smartphone, then generate pseudo-scanned photos for unscanned photos. Finally, we propose to train on the scanned and pseudo-scanned photos representing a semi-supervised approach with a cycle process as: high-quality images --> real-/pseudo-scanned photos --> reconstructed images. The proposed semi-supervised scheme can balance between supervised and unsupervised errors while optimizing to limit imperfect pseudo inputs but still enhance restoration. As a result, the proposed DPScan quantitatively and qualitatively outperforms its baseline architecture, state-of-the-art academic research, and industrial products in smartphone photo scanning.

Read more
Computer Vision And Pattern Recognition

Deep Texture-Aware Features for Camouflaged Object Detection

Camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and the background for camouflaged object detection by formulating multiple texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network. The texture-aware refinement module computes the covariance matrices of feature responses to extract the texture information, designs an affinity loss to learn a set of parameter maps that help to separate the texture between camouflaged objects and the background, and adopts a boundary-consistency loss to explore the object detail structures.We evaluate our network on the benchmark dataset for camouflaged object detection both qualitatively and quantitatively. Experimental results show that our approach outperforms various state-of-the-art methods by a large margin.

Read more
Computer Vision And Pattern Recognition

Deep Video Prediction for Time Series Forecasting

Time series forecasting is essential for decision making in many domains. In this work, we address the challenge of predicting prices evolution among multiple potentially interacting financial assets. A solution to this problem has obvious importance for governments, banks, and investors. Statistical methods such as Auto Regressive Integrated Moving Average (ARIMA) are widely applied to these problems. In this paper, we propose to approach economic time series forecasting of multiple financial assets in a novel way via video prediction. Given past prices of multiple potentially interacting financial assets, we aim to predict the prices evolution in the future. Instead of treating the snapshot of prices at each time point as a vector, we spatially layout these prices in 2D as an image, such that we can harness the power of CNNs in learning a latent representation for these financial assets. Thus, the history of these prices becomes a sequence of images, and our goal becomes predicting future images. We build on a state-of-the-art video prediction method for forecasting future images. Our experiments involve the prediction task of the price evolution of nine financial assets traded in U.S. stock markets. The proposed method outperforms baselines including ARIMA, Prophet, and variations of the proposed method, demonstrating the benefits of harnessing the power of CNNs in the problem of economic time series forecasting.

Read more
Computer Vision And Pattern Recognition

Deep learning architectural designs for super-resolution of noisy images

Recent advances in deep learning have led to significant improvements in single image super-resolution (SR) research. However, due to the amplification of noise during the upsampling steps, state-of-the-art methods often fail at reconstructing high-resolution images from noisy versions of their low-resolution counterparts. However, this is especially important for images from unknown cameras with unseen types of image degradation. In this work, we propose to jointly perform denoising and super-resolution. To this end, we investigate two architectural designs: "in-network" combines both tasks at feature level, while "pre-network" first performs denoising and then super-resolution. Our experiments show that both variants have specific advantages: The in-network design obtains the strongest results when the type of image corruption is aligned in the training and testing dataset, for any choice of denoiser. The pre-network design exhibits superior performance on unseen types of image corruption, which is a pathological failure case of existing super-resolution models. We hope that these findings help to enable super-resolution also in less constrained scenarios where source camera or imaging conditions are not well controlled. Source code and pretrained models are available at this https URL angelvillar96/super-resolution-noisy-images.

Read more
Computer Vision And Pattern Recognition

Deep reinforcement learning-based image classification achieves perfect testing set accuracy for MRI brain tumors with a training set of only 30 images

Purpose: Image classification may be the fundamental task in imaging artificial intelligence. We have recently shown that reinforcement learning can achieve high accuracy for lesion localization and segmentation even with minuscule training sets. Here, we introduce reinforcement learning for image classification. In particular, we apply the approach to normal vs. tumor-containing 2D MRI brain images. Materials and Methods: We applied multi-step image classification to allow for combined Deep Q learning and TD(0) Q learning. We trained on a set of 30 images (15 normal and 15 tumor-containing). We tested on a separate set of 30 images (15 normal and 15 tumor-containing). For comparison, we also trained and tested a supervised deep-learning classification network on the same set of training and testing images. Results: Whereas the supervised approach quickly overfit the training data and as expected performed poorly on the testing set (57% accuracy, just over random guessing), the reinforcement learning approach achieved an accuracy of 100%. Conclusion: We have shown a proof-of-principle application of reinforcement learning to the classification of brain tumors. We achieved perfect testing set accuracy with a training set of merely 30 images.

Read more
Computer Vision And Pattern Recognition

DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

We propose DeepMetaHandles, a 3D conditional generative model based on mesh deformation. Given a collection of 3D meshes of a category and their deformation handles (control points), our method learns a set of meta-handles for each shape, which are represented as combinations of the given handles. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation. A new deformation can then be generated by sampling the coefficients of the meta-handles in a specific range. We employ biharmonic coordinates as the deformation function, which can smoothly propagate the control points' translations to the entire mesh. To avoid learning zero deformation as meta-handles, we incorporate a target-fitting module which deforms the input mesh to match a random target. To enhance deformations' plausibility, we employ a soft-rasterizer-based discriminator that projects the meshes to a 2D space. Our experiments demonstrate the superiority of the generated deformations as well as the interpretability and consistency of the learned meta-handles.

Read more
Computer Vision And Pattern Recognition

DeepRA: Predicting Joint Damage From Radiographs Using CNN with Attention

Joint damage in Rheumatoid Arthritis (RA) is assessed by manually inspecting and grading radiographs of hands and feet. This is a tedious task which requires trained experts whose subjective assessment leads to low inter-rater agreement. An algorithm which can automatically predict the joint level damage in hands and feet can help optimize this process, which will eventually aid the doctors in better patient care and research. In this paper, we propose a two-staged approach which amalgamates object detection and convolution neural networks with attention which can efficiently and accurately predict the overall and joint level narrowing and erosion from patients radiographs. This approach has been evaluated on hands and feet radiographs of patients suffering from RA and has achieved a weighted root mean squared error (RMSE) of 1.358 and 1.404 in predicting joint level narrowing and erosion Sharp van der Heijde (SvH) scores which is 31% and 19% improvement with respect to the baseline SvH scores, respectively. The proposed approach achieved a weighted absolute error of 1.456 in predicting the overall damage in hands and feet radiographs for the patients which is a 79% improvement as compared to the baseline. Our method also provides an inherent capability to provide explanations for model predictions using attention weights, which is essential given the black box nature of deep learning models. The proposed approach was developed during the RA2 Dream Challenge hosted by Dream Challenges and secured 4th and 8th position in predicting overall and joint level narrowing and erosion SvH scores from radiographs.

Read more
Computer Vision And Pattern Recognition

DeeperForensics Challenge 2020 on Real-World Face Forgery Detection: Methods and Results

This paper reports methods and results in the DeeperForensics Challenge 2020 on real-world face forgery detection. The challenge employs the DeeperForensics-1.0 dataset, one of the most extensive publicly available real-world face forgery detection datasets, with 60,000 videos constituted by a total of 17.6 million frames. The model evaluation is conducted online on a high-quality hidden test set with multiple sources and diverse distortions. A total of 115 participants registered for the competition, and 25 teams made valid submissions. We will summarize the winning solutions and present some discussions on potential research directions.

Read more
Computer Vision And Pattern Recognition

Deepfake Video Detection Using Convolutional Vision Transformer

The rapid advancement of deep learning models that can generate and synthesis hyper-realistic videos known as Deepfakes and their ease of access to the general public have raised concern from all concerned bodies to their possible malicious intent use. Deep learning techniques can now generate faces, swap faces between two subjects in a video, alter facial expressions, change gender, and alter facial features, to list a few. These powerful video manipulation methods have potential use in many fields. However, they also pose a looming threat to everyone if used for harmful purposes such as identity theft, phishing, and scam. In this work, we propose a Convolutional Vision Transformer for the detection of Deepfakes. The Convolutional Vision Transformer has two components: Convolutional Neural Network (CNN) and Vision Transformer (ViT). The CNN extracts learnable features while the ViT takes in the learned features as input and categorizes them using an attention mechanism. We trained our model on the DeepFake Detection Challenge Dataset (DFDC) and have achieved 91.5 percent accuracy, an AUC value of 0.91, and a loss value of 0.32. Our contribution is that we have added a CNN module to the ViT architecture and have achieved a competitive result on the DFDC dataset.

Read more

Ready to get started?

Join us today