Featured Researches

Computer Vision And Pattern Recognition

CHEF: Cross-modal Hierarchical Embeddings for Food Domain Retrieval

Despite the abundance of multi-modal data, such as image-text pairs, there has been little effort in understanding the individual entities and their different roles in the construction of these data instances. In this work, we endeavour to discover the entities and their corresponding importance in cooking recipes automaticall} as a visual-linguistic association problem. More specifically, we introduce a novel cross-modal learning framework to jointly model the latent representations of images and text in the food image-recipe association and retrieval tasks. This model allows one to discover complex functional and hierarchical relationships between images and text, and among textual parts of a recipe including title, ingredients and cooking instructions. Our experiments show that by making use of efficient tree-structured Long Short-Term Memory as the text encoder in our computational cross-modal retrieval framework, we are not only able to identify the main ingredients and cooking actions in the recipe descriptions without explicit supervision, but we can also learn more meaningful feature representations of food recipes, appropriate for challenging cross-modal retrieval and recipe adaption tasks.

Read more
Computer Vision And Pattern Recognition

CMS-LSTM: Context-Embedding and Multi-Scale Spatiotemporal-Expression LSTM for Video Prediction

Extracting variation and spatiotemporal features via limited frames remains as an unsolved and challenging problem in video prediction. Inherent uncertainty among consecutive frames exacerbates the difficulty in long-term prediction. To tackle the problem, we focus on capturing context correlations and multi-scale spatiotemporal flows, then propose CMS-LSTM by integrating two effective and lightweight blocks, namely Context-Embedding (CE) and Spatiotemporal-Expression (SE) block, into ConvLSTM backbone. CE block is designed for abundant context interactions, while SE block focuses on multi-scale spatiotemporal expression in hidden states. The newly introduced blocks also facilitate other spatiotemporal models (e.g., PredRNN, SA-ConvLSTM) to produce representative implicit features for video prediction. Qualitative and quantitative experiments demonstrate the effectiveness and flexibility of our proposed method. We use fewer parameters to reach markedly state-of-the-art results on Moving MNIST and TaxiBJ datasets in numbers of metrics. All source code is available at this https URL.

Read more
Computer Vision And Pattern Recognition

CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation

Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper will be released.

Read more
Computer Vision And Pattern Recognition

CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods. Code has been made available at this https URL.

Read more
Computer Vision And Pattern Recognition

Camera Calibration with Pose Guidance

Camera calibration plays a critical role in various computer vision tasks such as autonomous driving or augmented reality. Widely used camera calibration tools utilize plane pattern based methodology, such as using a chessboard or AprilTag board, user's calibration expertise level significantly affects calibration accuracy and consistency when without clear instruction. Furthermore, calibration is a recurring task that has to be performed each time the camera is changed or moved. It's also a great burden to calibrate huge amounts of cameras such as Driver Monitoring System (DMS) cameras in a production line with millions of vehicles. To resolve above issues, we propose a calibration system called Calibration with Pose Guidance to improve calibration accuracy, reduce calibration variance among different users or different trials of the same person. Experiment result shows that our proposed method achieves more accurate and consistent calibration than traditional calibration tools.

Read more
Computer Vision And Pattern Recognition

Capturing Detailed Deformations of Moving Human Bodies

We present a new method to capture detailed human motion, sampling more than 1000 unique points on the body. Our method outputs highly accurate 4D (spatio-temporal) point coordinates and, crucially, automatically assigns a unique label to each of the points. The locations and unique labels of the points are inferred from individual 2D input images only, without relying on temporal tracking or any human body shape or skeletal kinematics models. Therefore, our captured point trajectories contain all of the details from the input images, including motion due to breathing, muscle contractions and flesh deformation, and are well suited to be used as training data to fit advanced models of the human body and its motion. The key idea behind our system is a new type of motion capture suit which contains a special pattern with checkerboard-like corners and two-letter codes. The images from our multi-camera system are processed by a sequence of neural networks which are trained to localize the corners and recognize the codes, while being robust to suit stretching and self-occlusions of the body. Our system relies only on standard RGB or monochrome sensors and fully passive lighting and the passive suit, making our method easy to replicate, deploy and use. Our experiments demonstrate highly accurate captures of a wide variety of human poses, including challenging motions such as yoga, gymnastics, or rolling on the ground.

Read more
Computer Vision And Pattern Recognition

Cardiac Motion Modeling with Parallel Transport and Shape Splines

In cases of pressure or volume overload, probing cardiac function may be difficult because of the interactions between shape and this http URL this work, we use the LDDMM framework and parallel transport to estimate and reorient deformations of the right ventricle. We then propose a normalization procedure for the amplitude of the deformation, and a second-order spline model to represent the full cardiac contraction. The method is applied to 3D meshes of the right ventricle extracted from echocardiographic sequences of 314 patients divided into three disease categories and a control group. We find significant differences between pathologies in the model parameters, revealing insights into the dynamics of each disease.

Read more
Computer Vision And Pattern Recognition

CausalX: Causal Explanations and Block Multilinear Factor Analysis

By adhering to the dictum, "No causation without manipulation (treatment, intervention)", cause and effect data analysis represents changes in observed data in terms of changes in the causal factors. When causal factors are not amenable for active manipulation in the real world due to current technological limitations or ethical considerations, a counterfactual approach performs an intervention on the model of data formation. In the case of object representation or activity (temporal object) representation, varying object parts is generally unfeasible whether they be spatial and/or temporal. Multilinear algebra, the algebra of higher-order tensors, is a suitable and transparent framework for disentangling the causal factors of data formation. Learning a part-based intrinsic causal factor representations in a multilinear framework requires applying a set of interventions on a part-based multilinear model. We propose a unified multilinear model of wholes and parts. We derive a hierarchical block multilinear factorization, the M-mode Block SVD, that computes a disentangled representation of the causal factors by optimizing simultaneously across the entire object hierarchy. Given computational efficiency considerations, we introduce an incremental bottom-up computational alternative, the Incremental M-mode Block SVD, that employs the lower-level abstractions, the part representations, to represent the higher level of abstractions, the parent wholes. This incremental computational approach may also be employed to update the causal model parameters when data becomes available incrementally. The resulting object representation is an interpretable combinatorial choice of intrinsic causal factor representations related to an object's recursive hierarchy of wholes and parts that renders object recognition robust to occlusion and reduces training data requirements.

Read more
Computer Vision And Pattern Recognition

CelebA-Spoof Challenge 2020 on Face Anti-Spoofing: Methods and Results

As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to identify whether a presented face is live or spoof. Recently, a large-scale face anti-spoofing dataset, CelebA-Spoof which comprised of 625,537 pictures of 10,177 subjects has been released. It is the largest face anti-spoofing dataset in terms of the numbers of the data and the subjects. This paper reports methods and results in the CelebA-Spoof Challenge 2020 on Face AntiSpoofing which employs the CelebA-Spoof dataset. The model evaluation is conducted online on the hidden test set. A total of 134 participants registered for the competition, and 19 teams made valid submissions. We will analyze the top ranked solutions and present some discussion on future work directions.

Read more
Computer Vision And Pattern Recognition

CellTrack R-CNN: A Novel End-To-End Deep Neural Network for Cell Segmentation and Tracking in Microscopy Images

Cell segmentation and tracking in microscopy images are of great significance to new discoveries in biology and medicine. In this study, we propose a novel approach to combine cell segmentation and cell tracking into a unified end-to-end deep learning based framework, where cell detection and segmentation are performed with a current instance segmentation pipeline and cell tracking is implemented by integrating Siamese Network with the pipeline. Besides, tracking performance is improved by incorporating spatial information into the network and fusing spatial and visual prediction. Our approach was evaluated on the DeepCell benchmark dataset. Despite being simple and efficient, our method outperforms state-of-the-art algorithms in terms of both cell segmentation and cell tracking accuracies.

Read more

Ready to get started?

Join us today