Featured Researches

Graphics

Computational Design of Skinned Quad-Robots

We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins.Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory.We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype.

Read more
Graphics

Computational Design with Crowds

Computational design is aimed at supporting or automating design processes using computational techniques. However, some classes of design tasks involve criteria that are difficult to handle only with computers. For example, visual design tasks seeking to fulfill aesthetic goals are difficult to handle purely with computers. One promising approach is to leverage human computation; that is, to incorporate human input into the computation process. Crowdsourcing platforms provide a convenient way to integrate such human computation into a working system. In this chapter, we discuss such computational design with crowds in the domain of parameter tweaking tasks in visual design. Parameter tweaking is often performed to maximize the aesthetic quality of designed objects. Computational design powered by crowds can solve this maximization problem by leveraging human computation. We discuss the opportunities and challenges of computational design with crowds with two illustrative examples: (1) estimating the objective function (specifically, preference learning from crowds' pairwise comparisons) to facilitate interactive design exploration by a designer and (2) directly searching for the optimal parameter setting that maximizes the objective function (specifically, crowds-in-the-loop Bayesian optimization).

Read more
Graphics

Computational LEGO Technic Design

We introduce a method to automatically compute LEGO Technic models from user input sketches, optionally with motion annotations. The generated models resemble the input sketches with coherently-connected bricks and simple layouts, while respecting the intended symmetry and mechanical properties expressed in the inputs. This complex computational assembly problem involves an immense search space, and a much richer brick set and connection mechanisms than regular LEGO. To address it, we first comprehensively model the brick properties and connection mechanisms, then formulate the construction requirements into an objective function, accounting for faithfulness to input sketch, model simplicity, and structural integrity. Next, we model the problem as a sketch cover, where we iteratively refine a random initial layout to cover the input sketch, while guided by the objective. At last, we provide a working system to analyze the balance, stress, and assemblability of the generated model. To evaluate our method, we compared it with four baselines and professional designs by a LEGO expert, demonstrating the superiority of our automatic designs. Also, we recruited several users to try our system, employed it to create models of varying forms and complexities, and physically built most of them.

Read more
Graphics

Computational Parquetry: Fabricated Style Transfer with Wood Pixels

Parquetry is the art and craft of decorating a surface with a pattern of differently colored veneers of wood, stone or other materials. Traditionally, the process of designing and making parquetry has been driven by color, using the texture found in real wood only for stylization or as a decorative effect. Here, we introduce a computational pipeline that draws from the rich natural structure of strongly textured real-world veneers as a source of detail in order to approximate a target image as faithfully as possible using a manageable number of parts. This challenge is closely related to the established problems of patch-based image synthesis and stylization in some ways, but fundamentally different in others. Most importantly, the limited availability of resources (any piece of wood can only be used once) turns the relatively simple problem of finding the right piece for the target location into the combinatorial problem of finding optimal parts while avoiding resource collisions. We introduce an algorithm that allows to efficiently solve an approximation to the problem. It further addresses challenges like gamut mapping, feature characterization and the search for fabricable cuts. We demonstrate the effectiveness of the system by fabricating a selection of "photo-realistic" pieces of parquetry from different kinds of unstained wood veneer.

Read more
Graphics

Computationally efficient transfinite patches with fullness control

Transfinite patches provide a simple and elegant solution to the problem of representing non-four-sided continuous surfaces, which are useful in a variety of applications, such as curve network based design. Real-time responsiveness is essential in this context, and thus reducing the computation cost is an important concern. The Midpoint Coons (MC) patch presented in this paper is a fusion of two previous transfinite schemes, combining the speed of one with the superior control mechanism of the other. This is achieved using a new constrained parameterization based on generalized barycentric coordinates and transfinite blending functions.

Read more
Graphics

Computing Light Transport Gradients using the Adjoint Method

This paper proposes a new equation from continuous adjoint theory to compute the gradient of quantities governed by the Transport Theory of light. Unlike discrete gradients ala autograd, which work at the code level, we first formulate the continuous theory and then discretize it. The key insight of this paper is that computing gradients in Transport Theory is akin to computing the importance, a quantity adjoint to radiance that satisfies an adjoint equation. Importance tells us where to look for light that matters. This is one of the key insights of this paper. In fact, this mathematical journey started from a whimsical thought that these adjoints might be related. Computing gradients is therefore no more complicated than computing the importance field. This insight and the following paper hopefully will shed some light on this complicated problem and ease the implementations of gradient computations in existing path tracers.

Read more
Graphics

Computing Three-dimensional Constrained Delaunay Refinement Using the GPU

We propose the first GPU algorithm for the 3D triangulation refinement problem. For an input of a piecewise linear complex G and a constant B , it produces, by adding Steiner points, a constrained Delaunay triangulation conforming to G and containing tetrahedra mostly of radius-edge ratios smaller than B . Our implementation of the algorithm shows that it can be an order of magnitude faster than the best CPU algorithm while using a similar amount of Steiner points to produce triangulations of comparable quality.

Read more
Graphics

Constrained Generative Adversarial Networks for Interactive Image Generation

Generative Adversarial Networks (GANs) have received a great deal of attention due in part to recent success in generating original, high-quality samples from visual domains. However, most current methods only allow for users to guide this image generation process through limited interactions. In this work we develop a novel GAN framework that allows humans to be "in-the-loop" of the image generation process. Our technique iteratively accepts relative constraints of the form "Generate an image more like image A than image B". After each constraint is given, the user is presented with new outputs from the GAN, informing the next round of feedback. This feedback is used to constrain the output of the GAN with respect to an underlying semantic space that can be designed to model a variety of different notions of similarity (e.g. classes, attributes, object relationships, color, etc.). In our experiments, we show that our GAN framework is able to generate images that are of comparable quality to equivalent unsupervised GANs while satisfying a large number of the constraints provided by users, effectively changing a GAN into one that allows users interactive control over image generation without sacrificing image quality.

Read more
Graphics

ConstructAide: Analyzing and Visualizing Construction Sites through Photographs and Building Models

We describe a set of tools for analyzing, visualizing, and assessing architectural/construction progress with unordered photo collections and 3D building models. With our interface, a user guides the registration of the model in one of the images, and our system automatically computes the alignment for the rest of the photos using a novel Structure-from-Motion (SfM) technique; images with nearby viewpoints are also brought into alignment with each other. After aligning the photo(s) and model(s), our system allows a user, such as a project manager or facility owner, to explore the construction site seamlessly in time, monitor the progress of construction, assess errors and deviations, and create photorealistic architectural visualizations. These interactions are facilitated by automatic reasoning performed by our system: static and dynamic occlusions are removed automatically, rendering information is collected, and semantic selection tools help guide user input. We also demonstrate that our user-assisted SfM method outperforms existing techniques on both real-world construction data and established multi-view datasets.

Read more
Graphics

Constructing Human Motion Manifold with Sequential Networks

This paper presents a novel recurrent neural network-based method to construct a latent motion manifold that can represent a wide range of human motions in a long sequence. We introduce several new components to increase the spatial and temporal coverage in motion space while retaining the details of motion capture data. These include new regularization terms for the motion manifold, combination of two complementary decoders for predicting joint rotations and joint velocities, and the addition of the forward kinematics layer to consider both joint rotation and position errors. In addition, we propose a set of loss terms that improve the overall quality of the motion manifold from various aspects, such as the capability of reconstructing not only the motion but also the latent manifold vector, and the naturalness of the motion through adversarial loss. These components contribute to creating compact and versatile motion manifold that allows for creating new motions by performing random sampling and algebraic operations, such as interpolation and analogy, in the latent motion manifold.

Read more

Ready to get started?

Join us today