Featured Researches

Multiagent Systems

A mechanism to promote social behaviour in household load balancing

Reducing the peak energy consumption of households is essential for the effective use of renewable energy sources, in order to ensure that as much household demand as possible can be met by renewable sources. This entails spreading out the use of high-powered appliances such as dishwashers and washing machines throughout the day. Traditional approaches to this problem have relied on differential pricing set by a centralised utility company. But this mechanism has not been effective in promoting widespread shifting of appliance usage. Here we consider an alternative decentralised mechanism, where agents receive an initial allocation of time-slots to use their appliances and can then exchange these with other agents. If agents are willing to be more flexible in the exchanges they accept, then overall satisfaction, in terms of the percentage of agents time-slot preferences that are satisfied, will increase. This requires a mechanism that can incentivise agents to be more flexible. Building on previous work, we show that a mechanism incorporating social capital - the tracking of favours given and received - can incentivise agents to act flexibly and give favours by accepting exchanges that do not immediately benefit them. We demonstrate that a mechanism that tracks favours increases the overall satisfaction of agents, and crucially allows social agents that give favours to outcompete selfish agents that do not under payoff-biased social learning. Thus, even completely self-interested agents are expected to learn to produce socially beneficial outcomes.

Read more
Multiagent Systems

A multi-agent system approach in evaluating human spatio-temporal vulnerability to seismic risk using social attachment

Social attachment theory states that individuals seek the proximity of attachment figures (e.g. family members, friends, colleagues, familiar places or objects) when faced with threat. During disasters, this means that family members may seek each other before evacuating, gather personal property before heading to familiar exits and places, or follow groups/crowds, etc. This hard-wired human tendency should be considered in the assessment of risk and the creation of disaster management plans. Doing so may result in more realistic evacuation procedures and may minimise the number of casualties and injuries. In this context, a dynamic spatio-temporal analysis of seismic risk is presented using SOLACE, a multi-agent model of pedestrian behaviour based on social attachment theory implemented using the Belief-Desire-Intention approach. The model focuses on the influence of human, social, physical and temporal factors on successful evacuation. Human factors considered include perception and mobility defined by age. Social factors are defined by attachment bonds, social groups, population distribution, and cultural norms. Physical factors refer to the location of the epicentre of the earthquake, spatial distribution/layout and attributes of environmental objects such as buildings, roads, barriers (cars), placement of safe areas, evacuation routes, and the resulting debris/damage from the earthquake. Experiments tested the influence of time of the day, presence of disabled persons and earthquake intensity. Initial results show that factors that influence arrivals in safe areas include (a) human factors (age, disability, speed), (b) pre-evacuation behaviours, (c) perception distance (social attachment, time of day), (d) social interaction during evacuation, and (e) physical and spatial aspects, such as limitations imposed by debris (damage), and the distance to safe areas. To validate the results, scenarios will be designed with stakeholders, who will also take part in the definition of a serious game. The recommendation of this research is that both social and physical aspects should be considered when defining vulnerability in the analysis of risk.

Read more
Multiagent Systems

A negotiating protocol for group decision support systems

Our contribution concerns interactive decision support systems for group decision support. Through this study, we apply to implement a decisional process aiming to represent the multiplicity of actors, their diversity, their behaviors and their interactions. In this context, we contribute to the design and development of a group decision support system. The system is modeled by a multi agents system while exploiting a negotiation protocol based on mediation and concession. This protocol allows decision-makers to express their preferences using multicriteria analysis methods, mainly the method by total aggregation AHP (Hierarchical Process Analysis) and the method by partial aggregation PROMETHEE II .

Read more
Multiagent Systems

A simulation-based evaluation of a Cargo-Hitching service for E-commerce using mobility-on-demand vehicles

Time-sensitive parcel deliveries, shipments requested for delivery in a day or less, are an increasingly important research subject. It is challenging to deal with these deliveries from a carrier perspective since it entails additional planning constraints, preventing an efficient consolidation of deliveries which is possible when demand is well known in advance. Furthermore, such time-sensitive deliveries are requested to a wider spatial scope than retail centers, including homes and offices. Therefore, an increase in such deliveries is considered to exacerbate negative externalities such as congestion and emissions. One of the solutions is to leverage spare capacity in passenger transport modes. This concept is often denominated as cargo-hitching. While there are various possible system designs, it is crucial that such solution does not deteriorate the quality of service of passenger trips. This research aims to evaluate the use of Mobility-On-Demand services to perform same-day parcel deliveries. For this purpose, we use SimMobility, a high-resolution agent-based simulation platform of passenger and freight flows, applied in Singapore. E-commerce demand carrier data are used to characterize simulated parcel delivery demand. Operational scenarios that aim to minimize the adverse effect of fulfilling deliveries with Mobility-On-Demand vehicles on Mobility-On-Demand passenger flows (fulfillment, wait and travel times) are explored. Results indicate that the Mobility-On-Demand services have potential to fulfill a considerable amount of parcel deliveries and decrease freight vehicle traffic and total vehicle-kilometers-travelled without compromising the quality of Mobility On-Demand for passenger travel.

Read more
Multiagent Systems

A sub-modular receding horizon solution for mobile multi-agent persistent monitoring

We study the problem of persistent monitoring of a finite number of inter-connected geographical nodes by a group of heterogeneous mobile agents. We assign to each geographical node a concave and increasing reward function that resets to zero after an agent's visit. Then, we design the optimal dispatch policy of which nodes to visit at what time and by what agent by finding a policy set that maximizes a utility that is defined as the total reward collected at visit times. We show that this optimization problem is NP-hard and its computational complexity increases exponentially with the number of the agents and the length of the mission horizon. By showing that the utility function is a monotone increasing and submodular set function of agents' policy, we proceed to propose a suboptimal dispatch policy design with a known optimality gap. To reduce the time complexity of constructing the feasible search set and also to induce robustness to changes in the operational factors, we perform our suboptimal policy design in a receding horizon fashion. Then, to compensate for the shortsightedness of the receding horizon approach for reward distribution beyond the feasible policies of the agents over the receding horizon, we add a new term to our utility, which provides a measure of nodal importance beyond the receding horizon's sight. This term gives the policy design an intuition to steer the agents towards the nodes with higher rewards on the patrolling graph. Finally, we discuss how our proposed algorithm can be implemented in a decentralized manner. A simulation study demonstrates our results.

Read more
Multiagent Systems

ABIDES: Towards High-Fidelity Market Simulation for AI Research

We introduce ABIDES, an Agent-Based Interactive Discrete Event Simulation environment. ABIDES is designed from the ground up to support AI agent research in market applications. While simulations are certainly available within trading firms for their own internal use, there are no broadly available high-fidelity market simulation environments. We hope that the availability of such a platform will facilitate AI research in this important area. ABIDES currently enables the simulation of tens of thousands of trading agents interacting with an exchange agent to facilitate transactions. It supports configurable pairwise network latencies between each individual agent as well as the exchange. Our simulator's message-based design is modeled after NASDAQ's published equity trading protocols ITCH and OUCH. We introduce the design of the simulator and illustrate its use and configuration with sample code, validating the environment with example trading scenarios. The utility of ABIDES is illustrated through experiments to develop a market impact model. We close with discussion of future experimental problems it can be used to explore, such as the development of ML-based trading algorithms.

Read more
Multiagent Systems

ACSEE: Antagonistic Crowd Simulation Model with Emotional Contagion and Evolutionary Game Theory

Antagonistic crowd behaviors are often observed in cases of serious conflict. Antagonistic emotions, which is the typical psychological state of agents in different roles (i.e. cops, activists, and civilians) in crowd violent scenes, and the way they spread through contagion in a crowd are important causes of crowd antagonistic behaviors. Moreover, games, which refers to the interaction between opposing groups adopting different strategies to obtain higher benefits and less casualties, determine the level of crowd violence. We present an antagonistic crowd simulation model, ACSEE, which is integrated with antagonistic emotional contagion and evolutionary game theories. Our approach models the antagonistic emotions between agents in different roles using two components: mental emotion and external emotion. We combine enhanced susceptible-infectious-susceptible (SIS) and game approaches to evaluate the role of antagonistic emotional contagion in crowd violence. Our evolutionary game theoretic approach incorporates antagonistic emotional contagion through deterrent force, which is modelled by a mixture of emotional forces and physical forces defeating the opponents. Antagonistic emotional contagion and evolutionary game theories influence each other to determine antagonistic crowd behaviors. We evaluate our approach on real-world scenarios consisting of different kinds of agents. We also compare the simulated crowd behaviors with real-world crowd videos and use our approach to predict the trends of crowd movements in violence incidents. We investigate the impact of various factors (number of agents, emotion, strategy, etc.) on the outcome of crowd violence. We present results from user studies suggesting that our model can simulate antagonistic crowd behaviors similar to those seen in real-world scenarios.

Read more
Multiagent Systems

ADMM-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

This paper investigates the multi-agent collision-free control problem for medium and large scale systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, the alternating direction method of multipliers (ADMM) algorithm is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this non-convex optimization problem is analyzed and discussed in detail. Finally, a multi-agent system with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach.

Read more
Multiagent Systems

AED: An Anytime Evolutionary DCOP Algorithm

Evolutionary optimization is a generic population-based metaheuristic that can be adapted to solve a wide variety of optimization problems and has proven very effective for combinatorial optimization problems. However, the potential of this metaheuristic has not been utilized in Distributed Constraint Optimization Problems (DCOPs), a well-known class of combinatorial optimization problems prevalent in Multi-Agent Systems. In this paper, we present a novel population-based algorithm, Anytime Evolutionary DCOP (AED), that uses evolutionary optimization to solve DCOPs. In AED, the agents cooperatively construct an initial set of random solutions and gradually improve them through a new mechanism that considers an optimistic approximation of local benefits. Moreover, we present a new anytime update mechanism for AED that identifies the best among a distributed set of candidate solutions and notifies all the agents when a new best is found. In our theoretical analysis, we prove that AED is anytime. Finally, we present empirical results indicating AED outperforms the state-of-the-art DCOP algorithms in terms of solution quality.

Read more
Multiagent Systems

Accumulating Risk Capital Through Investing in Cooperation

Recent work on promoting cooperation in multi-agent learning has resulted in many methods which successfully promote cooperation at the cost of becoming more vulnerable to exploitation by malicious actors. We show that this is an unavoidable trade-off and propose an objective which balances these concerns, promoting both safety and long-term cooperation. Moreover, the trade-off between safety and cooperation is not severe, and you can receive exponentially large returns through cooperation from a small amount of risk. We study both an exact solution method and propose a method for training policies that targets this objective, Accumulating Risk Capital Through Investing in Cooperation (ARCTIC), and evaluate them in iterated Prisoner's Dilemma and Stag Hunt.

Read more

Ready to get started?

Join us today