Featured Researches

Robotics

A Neurorobotic Embodiment for Exploring the Dynamical Interactions of a Spiking Cerebellar Model and a Robot Arm During Vision-based Manipulation Tasks

While the original goal for developing robots is replacing humans in dangerous and tedious tasks, the final target shall be completely mimicking the human cognitive and motor behaviour. Hence, building detailed computational models for the human brain is one of the reasonable ways to attain this. The cerebellum is one of the key players in our neural system to guarantee dexterous manipulation and coordinated movements as concluded from lesions in that region. Studies suggest that it acts as a forward model providing anticipatory corrections for the sensory signals based on observed discrepancies from the reference values. While most studies consider providing the teaching signal as error in joint-space, few studies consider the error in task-space and even fewer consider the spiking nature of the cerebellum on the cellular-level. In this study, a detailed cellular-level forward cerebellar model is developed, including modeling of Golgi and Basket cells which are usually neglected in previous studies. To preserve the biological features of the cerebellum in the developed model, a hyperparameter optimization method tunes the network accordingly. The efficiency and biological plausibility of the proposed cerebellar-based controller is then demonstrated under different robotic manipulation tasks reproducing motor behaviour observed in human reaching experiments.

Read more
Robotics

A Novel Collision Detection and Avoidance system for Midvehicle using Offset-based Curvilinear Motion

Major cause of midvehicle collision is due to the distraction of drivers in both the Front and rear-end vehicle witnessed in dense traffic and high speed road conditions. In view of this scenario, a crash detection and collision avoidance algorithm coined as Midvehicle Collision Detection and Avoidance System (MCDAS) is proposed to evade the possible crash at both ends of the host vehicle. The method based upon Constant Velocity (CV) model specifically, addresses two scenarios, the first scenario encompasses two sub-scenario namely, a) A rear-end collision avoidance mechanism that accelerates the host vehicle under no front-end vehicle condition and b) Curvilinear motion based on front and host vehicle offset (position), whilst, the other scenario deals with parallel parking issues. The offset based curvilinear motion of the host vehicle plays a vital role in threat avoidance from the front-end vehicle. A desired curvilinear strategy on left and right sides is achieved by the host vehicle with concern of possible CV to avoid both end collisions. In this methodology, path constraint is applicable for both scenarios with required direction. Monte Carlo analysis of MCDAS covering vehicle kinematics demonstrated acute discrimination with consistent performance for the collision validated on simulated with real-time data.

Read more
Robotics

A Novel Design of Soft Robotic Hand with a Human-inspired Soft Palm for Dexterous Grasping

Soft robotic hands and grippers are increasingly attracting attention as a robotic end-effector. Compared with rigid counterparts, they are safer for human-robot and environment-robot interactions, easier to control, lower cost and weight, and more compliant. Current soft robotic hands have mostly focused on the soft fingers and bending actuators. However, the palm is also essential part for grasping. In this work, we propose a novel design of soft humanoid hand with pneumatic soft fingers and soft palm. The hand is inexpensive to fabricate. The configuration of the soft palm is based on modular design which can be easily applied into actuating all kinds of soft fingers before. The splaying of the fingers, bending of the whole palm, abduction and adduction of the thumb are implemented by the soft palm. Moreover, we present a new design of soft finger, called hybrid bending soft finger (HBSF). It can both bend in the grasping axis and deflect in the side-to-side axis as human-like motion. The functions of the HBSF and soft palm were simulated by SOFA framework. And their performance was tested in experiments. The 6 fingers with 1 to 11 segments were tested and analyzed. The versatility of the soft hand is evaluated and testified by the grasping experiments in real scenario according to Feix taxonomy. And the results present the diversity of grasps and show promise for grasping a variety of objects with different shapes and weights.

Read more
Robotics

A Novel Shaft-to-Tissue Force Model for Safer Motion Planning of Steerable Needles

Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting these needles with curved trajectories increases the risk of tissue shearing due to large forces being exerted on the surrounding tissue by the needle's shaft. Such shearing can cause significant damage to surrounding tissue, potentially worsening patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation, which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction parameters, and tip piercing force. We then incorporate this force model as a cost function in an asymptotically near-optimal motion planner and demonstrate the ability to plan motions that consider the tissue normal forces from the needle shaft during planning in a simulated steering environment and a simulated lung tumor biopsy scenario. By planning motions for the needle that aim to minimize the tissue normal force explicitly, our method plans needle paths that reduce the risk of tissue shearing while still reaching desired targets in the body.

Read more
Robotics

A Particle Filtering Framework for Integrity Risk of GNSS-Camera Sensor Fusion

Adopting a joint approach towards state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in Particle RAIM [l] for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derive a probability distribution over position from camera images using map-matching. We formulate a Kullback-Leibler Divergence metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. The derived integrity risk upper bounds the probability of Hazardously Misleading Information (HMI). Experimental validation on a real-world dataset shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m Alert Limit in an urban scenario.

Read more
Robotics

A Pushing-Grasping Collaborative Method Based on Deep Q-Network Algorithm in Dual Perspectives

Aiming at the traditional grasping method for manipulators based on 2D camera, when faced with the scene of gathering or covering, it can hardly perform well in unstructured scenes that appear as gathering and covering, for the reason that can't recognize objects accurately in cluster scenes from a single perspective and the manipulators can't make the environment better for grasping. In this case, a novel method of pushing-grasping collaborative based on the deep Q-network in dual perspectives is proposed in this paper. This method adopts an improved deep Q network algorithm, with an RGB-D camera to obtain the information of objects' RGB images and point clouds from two perspectives, and combines the pushing and grasping actions so that the trained manipulator can make the scenes better for grasping so that it can perform well in more complicated grasping scenes. What's more, we improved the reward function of the deep Q-network and propose the piecewise reward function to speed up the convergence of the deep Q-network. We trained different models and tried different methods in the V-REP simulation environment, and it concluded that the method proposed in this paper converges quickly and the success rate of grasping objects in unstructured scenes raises up to 83.5%. Besides, it shows the generalization ability and well performance when novel objects appear in the scenes that the manipulator has never grasped before.

Read more
Robotics

A Recurrent Neural Network Approach to Roll Estimation for Needle Steering

Steerable needles are a promising technology for delivering targeted therapies in the body in a minimally-invasive fashion, as they can curve around anatomical obstacles and hone in on anatomical targets. In order to accurately steer them, controllers must have full knowledge of the needle tip's orientation. However, current sensors either do not provide full orientation information or interfere with the needle's ability to deliver therapy. Further, torsional dynamics can vary and depend on many parameters making steerable needles difficult to accurately model, limiting the effectiveness of traditional observer methods. To overcome these limitations, we propose a model-free, learned-method that leverages LSTM neural networks to estimate the needle tip's orientation online. We validate our method by integrating it into a sliding-mode controller and steering the needle to targets in gelatin and ex vivo ovine brain tissue. We compare our method's performance against an Extended Kalman Filter, a model-based observer, achieving significantly lower targeting errors.

Read more
Robotics

A Review of Testing Object-Based Environment Perception for Safe Automated Driving

Safety assurance of automated driving systems must consider uncertain environment perception. This paper reviews literature addressing how perception testing is realized as part of safety assurance. We focus on testing for verification and validation purposes at the interface between perception and planning, and structure our analysis along the three axes 1) test criteria and metrics, 2) test scenarios, and 3) reference data. Furthermore, the analyzed literature includes related safety standards, safety-independent perception algorithm benchmarking, and sensor modeling. We find that the realization of safety-aware perception testing remains an open issue since challenges concerning the three testing axes and their interdependencies currently do not appear to be sufficiently solved.

Read more
Robotics

A Robotic System for Implant Modification in Single-stage Cranioplasty

Craniomaxillofacial reconstruction with patient-specific customized craniofacial implants (CCIs) is most commonly performed for large-sized skeletal defects. Because the exact size of skull resection may not be known prior to the surgery, in the single-stage cranioplasty, a large CCI is prefabricated and resized intraoperatively with a manual-cutting process provided by a surgeon. The manual resizing, however, may be inaccurate and significantly add to the operating time. This paper introduces a fast and non-contact approach for intraoperatively determining the exact contour of the skull resection and automatically resizing the implant to fit the resection area. Our approach includes four steps: First, a patient's defect information is acquired by a 3D scanner. Second, the scanned defect is aligned to the CCI by registering the scanned defect to the reconstructed CT model. Third, a cutting toolpath is generated from the contour of the scanned defect. Lastly, the large CCI is resized by a cutting robot to fit the resection area according to the given toolpath. To evaluate the resizing performance of our method, six different resection shapes were used in the cutting experiments. We compared the performance of our method to the performances of surgeon's manual resizing and an existing technique which collects the defect contour with an optical tracking system and projects the contour on the CCI to guide the manual modification. The results show that our proposed method improves the resizing accuracy by 56% compared to the surgeon's manual modification and 42% compared to the projection method.

Read more
Robotics

A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments

In this paper, we propose a novel laser-inertial odometry and mapping method to achieve real-time, low-drift and robust pose estimation in large-scale highway environments. The proposed method is mainly composed of four sequential modules, namely scan pre-processing module, dynamic object detection module, laser-inertial odometry module and laser mapping module. Scan pre-processing module uses inertial measurements to compensate the motion distortion of each laser scan. Then, the dynamic object detection module is used to detect and remove dynamic objects from each laser scan by applying CNN segmentation network. After obtaining the undistorted point cloud without moving objects, the laser inertial odometry module uses an Error State Kalman Filter to fuse the data of laser and IMU and output the coarse pose estimation at high frequency. Finally, the laser mapping module performs a fine processing step and the "Frame-to-Model" scan matching strategy is used to create a static global map. We compare the performance of our method with two state-ofthe-art methods, LOAM and SuMa, using KITTI dataset and real highway scene dataset. Experiment results show that our method performs better than the state-of-the-art methods in real highway environments and achieves competitive accuracy on the KITTI dataset.

Read more

Ready to get started?

Join us today