Featured Researches

Robotics

A Safe Hierarchical Planning Framework for Complex Driving Scenarios based on Reinforcement Learning

Autonomous vehicles need to handle various traffic conditions and make safe and efficient decisions and maneuvers. However, on the one hand, a single optimization/sampling-based motion planner cannot efficiently generate safe trajectories in real time, particularly when there are many interactive vehicles near by. On the other hand, end-to-end learning methods cannot assure the safety of the outcomes. To address this challenge, we propose a hierarchical behavior planning framework with a set of low-level safe controllers and a high-level reinforcement learning algorithm (H-CtRL) as a coordinator for the low-level controllers. Safety is guaranteed by the low-level optimization/sampling-based controllers, while the high-level reinforcement learning algorithm makes H-CtRL an adaptive and efficient behavior planner. To train and test our proposed algorithm, we built a simulator that can reproduce traffic scenes using real-world datasets. The proposed H-CtRL is proved to be effective in various realistic simulation scenarios, with satisfying performance in terms of both safety and efficiency.

Read more
Robotics

A Safety and Passivity Filter for Robot Teleoperation Systems

In this paper, we present a way of enforcing safety and passivity properties of robot teleoperation systems, where a human operator interacts with a dynamical system modeling the robot. The approach does so in a holistic fashion, by combining safety and passivity constraints in a single optimization-based controller which effectively filters the desired control input before supplying it to the system. The result is a safety and passivity filter implemented as a convex quadratic program which can be solved efficiently and employed in an online fashion in many robotic teleoperation applications. Simulation results show the benefits of the approach developed in this paper applied to the human teleoperation of a second-order dynamical system.

Read more
Robotics

A Simulation-based End-to-End Learning Framework for Evidential Occupancy Grid Mapping

Evidential occupancy grid maps (OGMs) are a popular representation of the environment of automated vehicles. Inverse sensor models (ISMs) are used to compute OGMs from sensor data such as lidar point clouds. Geometric ISMs show a limited performance when estimating states in unobserved but inferable areas and have difficulties dealing with ambiguous input. Deep learning-based ISMs face the challenge of limited training data and they often cannot handle uncertainty quantification yet. We propose a deep learning-based framework for learning an OGM algorithm which is both capable of quantifying first- and second-order uncertainty and which does not rely on manually labeled data. Results on synthetic and on real-world data show superiority over other approaches. Source code and datasets are available at this https URL

Read more
Robotics

A Survey of Deep RL and IL for Autonomous Driving Policy Learning

Autonomous driving (AD) agents generate driving policies based on online perception results, which are obtained at multiple levels of abstraction, e.g., behavior planning, motion planning and control. Driving policies are crucial to the realization of safe, efficient and harmonious driving behaviors, where AD agents still face substantial challenges in complex scenarios. Due to their successful application in fields such as robotics and video games, the use of deep reinforcement learning (DRL) and deep imitation learning (DIL) techniques to derive AD policies have witnessed vast research efforts in recent years. This paper is a comprehensive survey of this body of work, which is conducted at three levels: First, a taxonomy of the literature studies is constructed from the system perspective, among which five modes of integration of DRL/DIL models into an AD architecture are identified. Second, the formulations of DRL/DIL models for conducting specified AD tasks are comprehensively reviewed, where various designs on the model state and action spaces and the reinforcement learning rewards are covered. Finally, an in-depth review is conducted on how the critical issues of AD applications regarding driving safety, interaction with other traffic participants and uncertainty of the environment are addressed by the DRL/DIL models. To the best of our knowledge, this is the first survey to focus on AD policy learning using DRL/DIL, which is addressed simultaneously from the system, task-driven and problem-driven perspectives. We share and discuss findings, which may lead to the investigation of various topics in the future.

Read more
Robotics

A Survey on Simulators for Testing Self-Driving Cars

A rigorous and comprehensive testing plays a key role in training self-driving cars to handle variety of situations that they are expected to see on public roads. The physical testing on public roads is unsafe, costly, and not always reproducible. This is where testing in simulation helps fill the gap, however, the problem with simulation testing is that it is only as good as the simulator used for testing and how representative the simulated scenarios are of the real environment. In this paper, we identify key requirements that a good simulator must have. Further, we provide a comparison of commonly used simulators. Our analysis shows that CARLA and LGSVL simulators are the current state-of-the-art simulators for end to end testing of self-driving cars for the reasons mentioned in this paper. Finally, we also present current challenges that simulation testing continues to face as we march towards building fully autonomous cars.

Read more
Robotics

A Task Allocation Approach for Human-Robot Collaboration in Product Defects Inspection Scenarios

The presence and coexistence of human operators and collaborative robots in shop-floor environments raises the need for assigning tasks to either operators or robots, or both. Depending on task characteristics, operator capabilities and the involved robot functionalities, it is of the utmost importance to design strategies allowing for the concurrent and/or sequential allocation of tasks related to object manipulation and assembly. In this paper, we extend the \textsc{FlexHRC} framework presented in \cite{darvish2018flexible} to allow a human operator to interact with multiple, heterogeneous robots at the same time in order to jointly carry out a given task. The extended \textsc{FlexHRC} framework leverages a concurrent and sequential task representation framework to allocate tasks to either operators or robots as part of a dynamic collaboration process. In particular, we focus on a use case related to the inspection of product defects, which involves a human operator, a dual-arm Baxter manipulator from Rethink Robotics and a Kuka youBot mobile manipulator.

Read more
Robotics

A Trident Quaternion Framework for Inertial-based Navigation Part I: Rigid Motion Representation and Computation

Strapdown inertial navigation research involves the parameterization and computation of the attitude, velocity and position of a rigid body in a chosen reference frame. The community has long devoted to finding the most concise and efficient representation for the strapdown inertial navigation system (INS). The current work is motivated by simplifying the existing dual quaternion representation of the kinematic model. This paper proposes a compact and elegant representation of the body's attitude, velocity and position, with the aid of a devised trident quaternion tool in which the position is accounted for by adding a second imaginary part to the dual quaternion. Eventually, the kinematics of strapdown INS are cohesively unified in one concise differential equation, which bears the same form as the classical attitude quaternion equation. In addition, the computation of this trident quaternion-based kinematic equation is implemented with the recently proposed functional iterative integration approach. Numerical results verify the analysis and show that incorporating the new representation into the functional iterative integration scheme achieves high inertial navigation computation accuracy as well.

Read more
Robotics

A Trident Quaternion Framework for Inertial-based Navigation Part II: Error Models and Application to Initial Alignment

This work deals with error models for trident quaternion framework proposed in the companion paper (Part I) and further uses them to investigate the odometer-aided static/in-motion inertial navigation attitude alignment for land vehicles. By linearizing the trident quaternion kinematic equation, the left and right trident quaternion error models are obtained, which are found to be equivalent to those derived from profound group affine. The two error models are used to design their corresponding extended Kalman filters (EKF), namely, the left-quaternion EKF (LQEKF) and the right-quaternion EKF (RQEKF). Simulations and field tests are conducted to evaluate their actual performances. Owing to the high estimation consistency, the L/RQEKF converge much faster in the static alignment than the traditional error model-based EKF, even under arbitrary large heading initialization. For the in-motion alignment, the L/RQEKF possess much larger convergence region than the traditional EKF does, although they still require the aid of attitude initialization so as to avoid large initial attitude errors.

Read more
Robotics

A Visibility Roadmap Sampling Approach for a Multi-Robot Visibility-Based Pursuit-Evasion Problem

Given a two-dimensional polygonal space, the multi-robot visibility-based pursuit-evasion problem tasks several pursuer robots with the goal of establishing visibility with an arbitrarily fast evader. The best known complete algorithm for this problem takes time doubly exponential in the number of robots. However, sampling-based techniques have shown promise in generating feasible solutions in these scenarios. One of the primary drawbacks to employing existing sampling-based methods is that existing algorithms have long execution times and high failure rates for complex environments. This paper addresses that limitation by proposing a new algorithm that takes an environment as its input and returns a joint motion strategy which ensures that the evader is captured by one of the pursuers. Starting with a single pursuer, we sequentially construct Sample-Generated Pursuit-Evasion Graphs to create such a joint motion strategy. This sequential graph structure ensures that our algorithm will always terminate with a solution, regardless of the complexity of the environment. We describe an implementation of this algorithm and present quantitative results that show significant improvement in comparison to the existing algorithm.

Read more
Robotics

A general framework for modeling and dynamic simulation of multibody systems using factor graphs

In this paper, we present a novel general framework grounded in the factor graph theory to solve kinematic and dynamic problems for multi-body systems. Although the motion of multi-body systems is considered to be a well-studied problem and various methods have been proposed for its solution, a unified approach providing an intuitive interpretation is still pursued. We describe how to build factor graphs to model and simulate multibody systems using both, independent and dependent coordinates. Then, batch optimization or a fixed-lag-smoother can be applied to solve the underlying optimization problem that results in a highly-sparse nonlinear minimization problem. The proposed framework has been tested in extensive simulations and validated against a commercial multibody software. We release a reference implementation as an open-source C++ library, based on the GTSAM framework, a well-known estimation library. Simulations of forward and inverse dynamics are presented, showing comparable accuracy with classical approaches. The proposed factor graph-based framework has the potential to be integrated into applications related with motion estimation and parameter identification of complex mechanical systems, ranging from mechanisms to vehicles, or robot manipulators.

Read more

Ready to get started?

Join us today