Featured Researches

Subcellular Processes

IRE1 alpha may be causing abnormal loss of p53 at post transcriptional level in chronic myeloid leukemia

Current treatment strategy for chronic myeloid leukemia (CML) mainly includes inhibition of tyrosine kinase activity, which has dramatically improved the prognosis of the disease but without cure. In addition some patients may become drug resistant. Thus there is still the need for other therapies to avoid resistance and if possible to cure the disease. Loss of p53 is known to play an important role in the disease progression of CML and causes drug resistance. Here I propose that in CML, inositol requiring enzyme 1 alpha (IRE1 alpha) may cause abnormal degradation of p53 mRNA resulting in inhibition of apoptosis in leukemic clonal cells, which has not been elucidated before. Hence, I propose that inhibition of endoribonuclease activity of IRE1 alpha with small molecule inhibitors may provide a novel strategy to enhance p53 function in CML leukemic clones to overcome the limitations of current treatment regimens.

Read more
Subcellular Processes

Imaging cytochrome C oxidase and FoF1-ATP synthase in mitochondrial cristae of living human cells by FLIM and superresolution microscopy

Cytochrome C oxidase and FoF1-ATP synthase constitute complex IV and V, respectively, of the five membrane-bound enzymes in mitochondria comprising the respiratory chain. These enzymes are located in the inner mitochondrial membrane (IMM), which exhibits large invaginations called cristae. According to recent cryo-tomography, FoF1-ATP synthases are located predominantly at the rim of the cristae, while cytochrome C oxidases are likely distributed in planar membrane areas of the cristae. Previous FLIM measurements (K. Busch and coworkers) of complex II and III unravelled differences in the local environment of the membrane enzymes in the cristae. Here, we tagged complex IV and V with mNeonGreen and investigated their mitochondrial nano-environment by FLIM and superresolution microscopy in living human cells. Different lifetimes and anisotropy values were found and will be discussed.

Read more
Subcellular Processes

In Vivo Localization of Fas-Associated Death Domain Protein in the Nucleus and Cytoplasm of Normal Thyroid and Liver Cells

FADD (Fas-associated death domain) is the main death receptor adaptor molecule that transmits apoptotic signal. Recently, FADD protein was shown to be expressed both in the cytoplasm and nucleus of in vitro cell lines. In contrast to the cytoplasmic FADD, the nuclear FADD was shown to protect cells from apoptosis. However, in vivo subcellular localization of FADD was still unknown. Here, we demonstrated that FADD protein was expressed in both cytoplasmic and nuclear compartment in ex vivo thyroid cells demonstrating that nuclear sublocalization of FADD protein was a relevant phenomenon occurring in vivo. Moreover, we showed that in the nucleus of untransformed thyroid cells FADD localized mainly on euchromatin. We confirmed the nuclear localization of FADD in ex vivo liver and showed that in this organ FADD and MBD4 interact together. These results demonstrate that FADD is physiologically expressed in the nucleus of cells in at least two mouse organs. This particular localization opens new possible role of FADD in vivo either asan inhibitor of cell death, or as a transcription factor, or as a molecular link between apoptosis and genome surveillance.

Read more
Subcellular Processes

In vivo facilitated diffusion model

Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.

Read more
Subcellular Processes

Increased accuracy of ligand sensing by receptor diffusion on cell surface

The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate AMPA and NDMA receptors, although the NMDA receptor is overall much noiser. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

Read more
Subcellular Processes

Influence of Multiplicative Stochastic Variation on Translational Elongation Rates

Recent experiments have shown that stochastic effects exerted at the level of translation contribute a substantial portion of the variation in abundance of proteins expressed at moderate to high levels. This study analyzes translational noise arising from fluctuations in residue-specific elongation rates. The resulting variation has multiplicative components that lead individual protein abundances in a population to exhibit approximately log-normal behavior. The high variability inherent in the process leads to parameter variation that has the features of a type of noise in biological systems that has been characterized as extrinsic. Elongation rate variation offers an accounting for a major component of extrinsic noise, and the analysis provided here highlights a probability distribution that is a natural extension of the Poisson and has broad applicability to many types of multiplicative noise processes.

Read more
Subcellular Processes

Information costs in the control of protein synthesis

Efficient protein synthesis depends on the availability of charged tRNA molecules. With 61 different codons, shifting the balance among the tRNA abundances can lead to large changes in the protein synthesis rate. Previous theoretical work has asked about the optimization of these abundances, and there is some evidence that regulatory mechanisms bring cells close to this optimum, on average. We formulate the tradeoff between the precision of control and the efficiency of synthesis, asking for the maximum entropy distribution of tRNA abundances consistent with a desired mean rate of protein synthesis. Our analysis, using data from E. coli, indicates that reasonable synthesis rates are consistent only with rather low entropies, so that the cell's regulatory mechanisms must encode a large amount of information about the "correct" tRNA abundances.

Read more
Subcellular Processes

Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length

Self-organization of proteins in space and time is of crucial importance for the functioning of cellular processes. Often, this organization takes place in the presence of strong random fluctuations due to the small number of molecules involved. We report on stochastic switching of the Min-protein distributions between the two cell halves in short Escherichia coli cells. A computational model provides strong evidence that the macroscopic switching is rooted in microscopic noise on the molecular scale. In longer bacteria, the switching turns into regular oscillations that are required for positioning of the division plane. As the pattern becomes more regular, cell-to-cell variability also lessens, indicating cell length-dependent regulation of Min-protein activity.

Read more
Subcellular Processes

Intrinsic noise, Delta-Notch signalling and delayed reactions promote sustained, coherent, synchronised oscillations in the presomitic mesoderm

Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronise noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.

Read more
Subcellular Processes

Investigating the robustness of the classical enzyme kinetic equations in small intracellular compartments

Classical descriptions of enzyme kinetics ignore the physical nature of the intracellular environment. Main implicit assumptions behind such approaches are that reactions occur in compartment volumes which are large enough so that molecular discreteness can be ignored and that molecular transport occurs via diffusion. Starting from a master equation description of enzyme reaction kinetics and assuming metabolic steady-state conditions, we derive novel mesoscopic rate equations which take into account (i) the intrinsic molecular noise due to the low copy number of molecules in intracellular compartments (ii) the physical nature of the substrate transport process, i.e. diffusion or vesicle-mediated transport. These equations replace the conventional macroscopic and deterministic equations in the context of intracellular kinetics. The latter are recovered in the limit of infinite compartment volumes. We find that deviations from the predictions of classical kinetics are pronounced (hundreds of percent in the estimate for the reaction velocity) for enzyme reactions occurring in compartments which are smaller than approximately 200nm, for the case of substrate transport to the compartment being mediated principally by vesicle or granule transport and in the presence of competitive enzyme inhibitors. This has implications for the common approach of modelling large intracellular reaction networks using ordinary differential equations and also for the calculation of the effective dosage of competitive inhibitor drugs.

Read more

Ready to get started?

Join us today