Featured Researches

Subcellular Processes

Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependences on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production in terms of the rate constants and the concentrations are calculated analytically. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

Read more
Subcellular Processes

Kinetics of Protein-DNA Interactions: First-Passage Analysis

All living systems can function only far away from equilibrium, and for this reason chemical kinetic methods are critically important for uncovering the mechanisms of biological processes. Here we present a new theoretical method of investigating dynamics of protein-DNA interactions, which govern all major biological processes. It is based on a first-passage analysis of biochemical and biophysical transitions, and it provides a fully analytic description of the processes. Our approach is explained for the case of a single protein searching for a specific binding site on DNA. In addition, the application of the method to investigations of the effect of DNA sequence heterogeneity, and the role multiple targets and traps in the protein search dynamics are discussed.

Read more
Subcellular Processes

LET-99-dependent spatial restriction of active force generators makes spindle's position robust

During the asymmetric division of the Caenorhabditis elegans nematode zygote, the polarity cues distribution and daughter cell fates depend on the correct positioning of the mitotic spindle, which results from both centering and cortical pulling forces. Revealed by anaphase spindle rocking, these pulling forces are regulated by the force generator dynamics, which are in turn consequent of mitotic progression. We found a novel, additional, regulation of these forces by the spindle position. It controls astral microtubule availability at the cortex, on which the active force generators can pull. Importantly, this positional control relies on the polarity dependent LET-99 cortical band, which restricts or concentrates generators to a posterior crescent. We ascribed this control to the microtubule dynamics at the cortex. Indeed, in mapping the cortical contacts, we found a correlation between the centrosome-cortex distance and the microtubule contact density. In turn, it modulates pulling force generator activity. We modelled this control, predicting and experimentally validating that the posterior crescent extent controlled where the anaphase oscillations started, in addition to mitotic progression. Finally, we propose that spatially restricting force generator to a posterior crescent sets the spindle's final position, reflecting polarity through the LET-99 dependent restriction of force generators to a posterior crescent. This regulation superimposes that of force generator processivity. This novel control confers a low dependence on microtubule and active force generator exact numbers or dynamics, provided that they exceed the threshold needed for posterior displacement. Interestingly, this robustness originates in cell mechanics rather than biochemical networks.

Read more
Subcellular Processes

Level crossing statistics in a biologically motivated model of a long dynamic protrusion: passage times, random and extreme excursions

Long cell protrusions, which are effectively one-dimensional, are highly dynamic subcellular structures. Length of many such protrusions keep fluctuating about the mean value even in the the steady state. We develop here a stochastic model motivated by length fluctuations of a type of appendage of an eukaryotic cell called flagellum (also called cilium). Exploiting the techniques developed for the calculation of level-crossing statistics of random excursions of stochastic process, we have derived analytical expressions of passage times for hitting various thresholds, sojourn times of random excursions beyond the threshold and the extreme lengths attained during the lifetime of these model flagella. We identify different parameter regimes of this model flagellum that mimic those of the wildtype and mutants of a well known flagellated cell. By analysing our model in these different parameter regimes, we demonstrate how mutation can alter the level-crossing statistics even when the steady state length remains unaffected by the same mutation. Comparison of the theoretically predicted level crossing statistics, in addition to mean and variance of the length, in the steady state with the corresponding experimental data can be used in near future as stringent tests for the validity of the models of flagellar length control. The experimental data required for this purpose, though never reported till now, can be collected, in principle, using a method developed very recently for flagellar length fluctuations.

Read more
Subcellular Processes

Limited processivity of single motors improves overall transport flux of self-assembled motor-cargo complexes

Single kinesin molecular motors can processively move along a microtubule (MT) a few micrometers on average before dissociating. However, cellular length scales over which transport occurs are several hundred microns and more. Why seemingly unreliable motors are used to transport cellular cargo remains poorly understood. We propose a new theory for how low processivity, the average length of a single bout of directed motion, can enhance cellular transport when motors and cargoes must first diffusively self assemble into complexes. We employ stochastic modeling to determine the effect of processivity on overall cargo transport flux. We show that, under a wide range of physiologically relevant conditions, possessing "infinite" processivity does not maximize flux along MTs. Rather, we find that low processivity i.e., weak binding of motors to MTs, is optimal. These results shed light on the relationship between processivity and transport efficiency and offer a new theory for the physiological benefits of low motor processivity.

Read more
Subcellular Processes

Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction

Mechanoelectrical transduction in the inner ear is a biophysical process underlying the senses of hearing and balance. The key players involved in this process are mechanosensitive ion channels. They are located in the stereocilia of hair cells and opened by the tension in specialized molecular springs, the tip links, connecting adjacent stereocilia. When channels open, the tip links relax, reducing the hair-bundle stiffness. This gating compliance makes hair cells especially sensitive to small stimuli. The classical explanation for the gating compliance is that the conformational rearrangement of a single channel directly shortens the tip link. However, to reconcile theoretical models based on this mechanism with experimental data, an unrealistically large structural change of the channel is required. Experimental evidence indicates that each tip link is a dimeric molecule, associated on average with two channels at its lower end. It also indicates that the lipid bilayer modulates channel gating, although it is not clear how. Here, we design and analyze a model of mechanotransduction where each tip link attaches to two channels, mobile within the membrane. Their states and positions are coupled by membrane-mediated elastic forces arising from the interaction between the channels' hydrophobic cores and that of the lipid bilayer. This coupling induces cooperative opening and closing of the channels. The model reproduces the main properties of hair-cell mechanotransduction using only realistic parameters constrained by experimental evidence. This work provides an insight into the fundamental role that membrane-mediated ion-channel cooperativity can play in sensory physiology.

Read more
Subcellular Processes

Low-Dimensional Manifold of Actin Polymerization Dynamics

Actin filaments are critical components of the eukaryotic cytoskeleton, playing important roles in a number of cellular functions, such as cell migration, organelle transport, and mechanosensation. They are helical polymers with a well-defined polarity, composed of globular monomers that bind nucleotides in one of three hydrolysis states (ATP, ADP-Pi, or ADP). Mean-field models of the dynamics of actin polymerization have succeeded in, among other things, determining the nucleotide profile of an average filament and resolving the mechanisms of accessory proteins, however these models require numerical solution of a high-dimensional system of nonlinear ODE's. By truncating a set of recursion equations, the Brooks-Carlsson model reduces dimensionality to 11, but it remains nonlinear and does not admit an analytical solution, hence, significantly hindering understanding of its resulting dynamics. In this work, by taking advantage of the fast timescales of the hydrolysis states of the filament tips, we propose two model reduction schemes that achieve low dimensionality and linearity. We provide an exact solution of the resulting linear equations and use it to shed light on the dynamical behaviors of the full BC model, highlighting the relative ordering of the timescales of various collective processes, and explaining some unusual dependence of the steady-state behavior on initial conditions.

Read more
Subcellular Processes

MCell-R: A particle-resolution network-free spatial modeling framework

Spatial heterogeneity can have dramatic effects on the biochemical networks that drive cell regulation and decision-making. For this reason, a number of methods have been developed to model spatial heterogeneity and incorporated into widely used modeling platforms. Unfortunately, the standard approaches for specifying and simulating chemical reaction networks become untenable when dealing with multi-state, multi-component systems that are characterized by combinatorial complexity. To address this issue, we developed MCell-R, a framework that extends the particle-based spatial Monte Carlo simulator, MCell, with the rule-based model specification and simulation capabilities provided by BioNetGen and NFsim. The BioNetGen syntax enables the specification of biomolecules as structured objects whose components can have different internal states that represent such features as covalent modification and conformation and which can bind components of other molecules to form molecular complexes. The network-free simulation algorithm used by NFsim enables efficient simulation of rule-based models even when the size of the network implied by the biochemical rules is too large to enumerate explicitly, which frequently occurs in detailed models of biochemical signaling. The result is a framework that can efficiently simulate systems characterized by combinatorial complexity at the level of spatially-resolved individual molecules over biologically relevant time and length scales.

Read more
Subcellular Processes

Macroscopic Kinetic Effect of Cell-to-Cell Variation in Biochemical Reactions

Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzyme abundance affect the collective kinetics of metabolic reactions observed within a population of cells. Kinetic parameters measured at the cell population level are shown to be systematically deviated from those of single cells, even within populations of homogeneous parameters. Because of these considerations, Michaelis-Menten kinetics can even be inappropriate to apply at the population level. Our findings elucidate a novel origin of discrepancy between in vivo and in vitro kinetics, and offer potential utility for analysis of single-cell metabolomic data.

Read more
Subcellular Processes

Mathematical Modelling and Analysis of the Brassinosteroid and Gibberellin Signalling Pathways and their Interactions

The plant hormones brassinosteroid (BR) and gibberellin (GA) have important roles in a wide range of processes involved in plant growth and development. In this paper we derive and analyse new mathematical models for the BR signalling pathway and for the crosstalk between the BR and GA signalling pathways. To analyse the effects of spatial heterogeneity of the signalling processes, along with spatially-homogeneous ODE models we derive coupled PDE-ODE systems modelling the temporal and spatial dynamics of molecules involved in the signalling pathways. The values of the parameters in the model for the BR signalling pathway are determined using experimental data on the gene expression of BR biosynthetic enzymes. The stability of steady state solutions of our mathematical model, shown for a wide range of parameters, can be related to the BR homeostasis. Our results for the crosstalk model suggest that the interaction between transcription factors BZR and DELLA exerts more influence on the dynamics of the signalling pathways than BZR-mediated biosynthesis of GA, suggesting that the interaction between transcription factors may constitute the principal mechanism of the crosstalk between the BR and GA signalling pathways. In general, perturbations in the GA signalling pathway have larger effects on the dynamics of components of the BR signalling pathway than perturbations in the BR signalling pathway on the dynamics of the GA pathway. The perturbation in the crosstalk mechanism also has a larger effect on the dynamics of the BR pathway than of the GA pathway. Large changes in the dynamics of the GA signalling processes can be observed only in the case where there are disturbances in both the BR signalling pathway and the crosstalk mechanism.

Read more

Ready to get started?

Join us today