Featured Researches

Subcellular Processes

Modeling tau transport in the axon initial segment

By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to MTs creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.

Read more
Subcellular Processes

Modeling the early steps of cytoplasmic trafficking in viral infection and gene delivery

Gene delivery of nucleic acid to the cell nucleus is a fundamental step in gene therapy. In this review of modeling drug and gene delivery, we focus on the particular stage of plasmid DNA or virus cytoplasmic trafficking. A challenging problem is to quantify the success of this limiting stage. We present some models and simulations of plasmid trafficking and of the limiting phase of DNA-polycation escape from an endosome and discuss virus cytoplasmic trafficking. The models can be used to assess the success of viral escape from endosomes, to quantify the early step of viral-cell infection, and to propose new simulation tools for designing new hybrid-viruses as synthetic vectors.

Read more
Subcellular Processes

Modeling the formation of in vitro filopodia

Filopodia are bundles of actin filaments that extend out ahead of the leading edge of a crawling cell to probe its upcoming environment. {\it In vitro} experiments [D. Vignjevic {\it et al.}, J. Cell Biol. {\bf 160}, 951 (2003)] have determined the minimal ingredients required for the formation of filopodia from the dendritic-like morphology of the leading edge. We model these experiments using kinetic aggregation equations for the density of growing bundle tips. In mean field, we determine the bundle size distribution to be broad for bundle sizes smaller than a characteristic bundle size above which the distribution decays exponentially. Two-dimensional simulations incorporating both bundling and cross-linking measure a bundle size distribution that agrees qualitatively with mean field. The simulations also demonstrate a nonmonotonicity in the radial extent of the dendritic region as a function of capping protein concentration, as was observed in experiments, due to the interplay between percolation and the ratcheting of growing filaments off a spherical obstacle.

Read more
Subcellular Processes

Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor

We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

Read more
Subcellular Processes

Modelling Diffuse Subcellular Protein Structures as Dynamic Social Networks

Fluorescence microscopy has led to impressive quantitative models and new insights gained from richer sets of biomedical imagery. However, there is a dearth of rigorous and established bioimaging strategies for modeling spatiotemporal behavior of diffuse, subcellular components such as mitochondria or actin. In many cases, these structures are assessed by hand or with other semi-quantitative measures. We propose to build descriptive and dynamic models of diffuse subcellular morphologies, using the mitochondrial protein patterns of cervical epithelial (HeLa) cells. We develop a parametric representation of the patterns as a mixture of probability masses. This mixture is iteratively perturbed over time to fit the evolving spatiotemporal behavior of the subcellular structures. We convert the resulting trajectory into a series of graph Laplacians to formally define a dynamic network. Finally, we demonstrate how graph theoretic analyses of the trajectories yield biologically-meaningful quantifications of the structures.

Read more
Subcellular Processes

Modelling Protein Target-Search in Human Chromosomes

Several processes in the cell, such as gene regulation, start when key proteins recognise and bind to short DNA sequences. However, as these sequences can be hundreds of million times shorter than the genome, they are hard to find by simple diffusion: diffusion-limited association rates may underestimate in vitro measurements up to several orders of magnitude. Moreover, the rates increase if the DNA is coiled rather than straight. Here we model how this works in vivo in mammalian cells. We use chromatin-chromatin contact data from state-of-the-art Hi-C experiments to map the protein target-search onto a network problem. The nodes represent a DNA segment and the weight of the links is proportional to measured contact probabilities. We then put forward a master equation for the density of searching protein that allows us to calculate the association rates across the genome analytically. For segments where the rates are high, we find that they are enriched with active genes and have high RNA expression levels. This paper suggests that the DNA's 3D conformation is important for protein search times in vivo and offers a method to interpret protein-binding profiles in eukaryotes that cannot be explained by the DNA sequence itself.

Read more
Subcellular Processes

Modelling the Establishment of PAR Protein Polarity in the One-Cell C. elegans Embryo

At the one-cell stage, the C. elegans embryo becomes polarized along the anterior-posterior axis. The PAR proteins form complementary anterior and posterior domains in a dynamic process driven by cytoskeletal rearrangement. Initially, the PAR proteins are uniformly distributed throughout the embryo. Following a cue from fertilization, cortical actomyosin contracts towards the anterior pole. PAR-3/PAR-6/PKC-3 (the anterior PAR proteins) become restricted to the anterior cortex. PAR-1 and PAR-2 (the posterior PAR proteins) become enriched in the posterior cortical region. We present a mathematical model of this polarity establishment process, in which we take a novel approach to combine reaction-diffusion dynamics of the PAR proteins coupled to a simple model of actomyosin contraction. We show that known interactions between the PAR proteins are sufficient to explain many aspects of the observed cortical PAR dynamics in both wild-type and mutant embryos. However, cytoplasmic PAR protein polarity, which is vital for generating daughter cells with distinct molecular components, cannot be properly explained within such a framework. We therefore consider additional mechanisms that can reproduce the proper cytoplasmic polarity. In particular we predict that cytoskeletal asymmetry in the cytoplasm, in addition to the cortical actomyosin asymmetry, is a critical determinant of PAR protein localization.

Read more
Subcellular Processes

Modelling the effect of ribosome mobility on the rate of protein synthesis

Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation. In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a Totally Asymmetric Simple Exclusion Process (TASEP) coupled to a finite diffusive reservoir, which we call the Ribosome Transport model with Diffusion (RTD). In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion in biological cells is fast enough so that it does not play a role in controlling the rate of translation initiation.

Read more
Subcellular Processes

Modelling the efficacy of hyperthermia treatment

Multimodal oncological strategies which combine chemotherapy or radiotherapy with hyperthermia have a potential of improving the efficacy of the non-surgical methods of cancer treatment. Hyperthermia engages the heat-shock response mechanism (HSR), main component of which are heat-shock proteins (HSP). Cancer cells have already partially activated HSR, thereby, hyperthermia may be more toxic to them relative to normal cells. On the other hand, HSR triggers thermotolerance, i.e. hyperthermia treated cells show an impairment in their susceptibility to a subsequent heat-induced stress. This poses questions about efficacy and optimal strategy of the anti-cancer therapy combined with hyperthermia treatment. To address these questions, we adapt our previous HSR model and propose its stochastic extension. We formalise the notion of a HSP-induced thermotolerance. Next, we estimate the intensity and the duration of the thermotolerance. Finally, we quantify the effect of a multimodal therapy based on hyperthermia and a cytotoxic effect of bortezomib, a clinically approved proteasome inhibitor. Consequently, we propose an optimal strategy for combining hyperthermia and proteasome inhibition modalities. In summary, by a proof of concept mathematical analysis of HSR we are able to support the common belief that the combination of cancer treatment strategies increases therapy efficacy. thermotolerance.

Read more
Subcellular Processes

Molecular Mechanisms for Microtubule Length Regulation by Kinesin-8 and XMAP215 Proteins

The cytoskeleton is regulated by a plethora of enzymes that influence the stability and dynamics of cytoskeletal filaments. Molecular motors of the kinesin-8 protein family depolymerise microtubules in a length-dependent manner, and experimental and theoretical evidence suggest a role for kinesin-8 in the dynamic regulation of microtubules. However, so far the detailed molecular mechanisms how these molecular motors interact with the growing microtubule tip remain elusive. Here we investigate two interaction scenarios for kinesin-8 and the microtubule tip. We give a comprehensive analysis of regimes where length-regulation is possible and characterise how the stationary length depends on the biochemical rates and the bulk concentrations of the various proteins. For a neutral scenario, where microtubules grow irrespective of whether the microtubule tip is occupied by a molecular motor, length regulation is possible only for a narrow range of biochemical rates and limited to small polymerisation rates. In contrast, for an inhibition scenario, where the presence of a motor at the microtubule tip inhibits microtubule growth, the regime of length regulation is extremely broad and includes high growth rates. These results also apply to situations where polymerising enzymes, like XMAP215, and kinesin-8 mutually exclude each other from the microtubule tip. We also investigate the stochastic dynamics of the two scenarios. While for the neutral scenario length is tightly controlled, length dynamics is intermittent for the inhibition scenario and exhibits extended periods of microtubule growth and shrinkage, reminiscent of microtubule dynamic instability. On a broader perspective, the set of models established in this work quite generally suggests that mutual exclusion of molecules at the ends of cytoskeletal filaments is an important factor for filament dynamics and regulation.

Read more

Ready to get started?

Join us today