A. A. Vostrukhin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. A. Vostrukhin.
Science | 2010
I. G. Mitrofanov; A. B. Sanin; William V. Boynton; G. Chin; James B. Garvin; D. V. Golovin; Larry G. Evans; K. Harshman; A. S. Kozyrev; M. L. Litvak; A. Malakhov; Erwan Mazarico; Timothy P. McClanahan; G. M. Milikh; M. I. Mokrousov; G. Nandikotkur; Gregory A. Neumann; I. Nuzhdin; R. Z. Sagdeev; V.V. Shevchenko; V. N. Shvetsov; David E. Smith; Richard D. Starr; V. I. Tret'yakov; J. Trombka; D. A. Usikov; A. Varenikov; A. A. Vostrukhin; Maria T. Zuber
Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon’s south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.
Journal of Geophysical Research | 2014
M. L. Litvak; I. G. Mitrofanov; A. B. Sanin; D. Lisov; A. Behar; William V. Boynton; Lauren DeFlores; F. Fedosov; D. V. Golovin; Craig Hardgrove; K. Harshman; I. Jun; A. S. Kozyrev; Ruslan O. Kuzmin; A. Malakhov; Ralph E. Milliken; M. Mischna; Jeffrey Edward Moersch; M. I. Mokrousov; V. N. Shvetsov; Kathryn M. Stack; Richard D. Starr; C. Tate; V. I. Tret'yakov; A. A. Vostrukhin
Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75–1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2–3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8–1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.
Journal of Geophysical Research | 2016
M. L. Litvak; Igor G. Mitrofanov; Craig Hardgrove; Kathryn M. Stack; A. B. Sanin; D. Lisov; William V. Boynton; F. Fedosov; D. V. Golovin; K. Harshman; Insoo Jun; A. S. Kozyrev; Ruslan O. Kuzmin; A. Malakhov; Ralph E. Milliken; Michael A. Mischna; Jeffrey Edward Moersch; M. I. Mokrousov; Richard D. Starr; C. Tate; V. I. Tret'yakov; A. A. Vostrukhin
The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments.
Astronomy Letters | 2016
I. G. Mitrofanov; A. S. Kozyrev; D. I. Lisov; A. A. Vostrukhin; D. V. Golovin; M. L. Litvak; A. V. Malakhov; M. I. Mokrousov; S. Yu. Nikiforov; A. B. Sanin
This paper presents the water and chlorine content estimates on the bottom of the Martian crater Gale obtained by processing the data of active neutron sensing with the DAN experiment onboard theNASA “Curiosity”Mars rover at 412 spots along the 11-kilometer track. For 78% of the examined spots the water distribution in depth is found to be homogeneous with a mean content of 2.1±0.5% by mass (here and elsewhere variations correspond to the mean square deviations). For 22% of the examined spots the data require a two-layer model of water distribution down to the sensitivity limit of about 60 сm. The mean water content in upper layer of these spots is about 2−3% by mass, which is close to the content for spots with the homogeneous water distribution. In 8% of the examined spots the water content in the bottom layer at a depth of 27 ± 18 сm increases to 5.6 ± 2.7%. In 14% of the examined spots the water content in the bottom layer at a depth of 14 ± 7 сm decreases to 1.2 ± 0.5%. For interpretation of these results we conclude that the Gale crater has areas both with high and low water content, which correspond to distinct sedimentary layers from different past epochs, when sedimentation process took place underwater and in air correspondingly.
Review of Scientific Instruments | 2016
A. S. Kozyrev; I. G. Mitrofanov; Alan Owens; F. Quarati; J. Benkhoff; B.N. Bakhtin; F. Fedosov; D. V. Golovin; M. L. Litvak; A. Malakhov; M. I. Mokrousov; I. O. Nuzhdin; A. B. Sanin; V. I. Tret'yakov; A. A. Vostrukhin; G. N. Timoshenko; V. N. Shvetsov; Carlos Granja; T. Slavicek; S. Pospisil
The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESAs BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.
Physics of Particles and Nuclei Letters | 2016
A. A. Vostrukhin; D. V. Golovin; P. V. Dubasov; A. O. Zontikov; A. S. Kozyrev; A. R. Krylov; V. A. Krylov; M. L. Litvak; A. Malakhov; I. G. Mitrofanov; M. I. Mokrousov; I. D. Ponomarev; A. N. Repkin; A. B. Sanin; G. N. Timoshenko; K. V. Udovichenko; V. N. Shvetsov
An experimental facility for testing and calibrating nuclear planetology instruments has been constructed in partnership between the Space Research Institute (Moscow) and the Joint Institute for Nuclear Research. A model of Martian soil with a size of 3.82 × 3.21 m2 and an overall mass of about 30 t is assembled from silicate glass. Glass is chosen in order to imitate absolutely dry soil close in composition to the Martian one. The heterogeneous model allows one to imitate the average elemental composition of Martian soil in the best possible way by adding layers of the necessary materials to it. Near-surface water ice is simulated by polyethylene layers buried at different depths within the glass model. A portable neutron generator is used as the neutron source for testing active neutron and gamma spectrometers. The facility is radiation-hazardous and is thus equipped with interlock and radiation monitoring systems in accordance with the effective regulations.
Physics of Particles and Nuclei Letters | 2016
M. L. Litvak; I. G. Mitrofanov; A. A. Vostrukhin; D. V. Golovin; P. V. Dubasov; A. O. Zontikov; A. S. Kozyrev; A. R. Krylov; V. A. Krylov; M. I. Mokrousov; A. N. Repkin; G. N. Timoshenko; K. V. Udovichenko; V. N. Shvetsov
In this work the results of ground tests with active neutron spectrometer DAN (Dynamic Albedo of Neutrons) are presented, which have performed at the Joint Institute for Nuclear Research to simulate space experiments on martian or lunar surfaces and to test ability of active neutron methods to detect layers of subsurface water ice or water at depths in range 0–40 cm. For this experiment we assembled thick models of soil (20–30 metric tons) from a dry material similar in the elemental composition with martian and lunar regolith. Polyethylene buried inside the target at different depths was used as a simulant of thin water/water ice layer.
Solar System Research | 2017
M. L. Litvak; D. V. Golovin; A. B. Kolesnikov; A. A. Vostrukhin; M. V. Djachkova; A. S. Kozyrev; I. G. Mitrofanov; M. I. Mokrousov; A. B. Sanin
This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.
Physics of Atomic Nuclei | 2016
M. I. Mokrousov; A. A. Vostrukhin; N. E. Karpushkina; A. Malakhov
Solar system planets exploration and cosmic neutrons and gamma-ray flux research have been dynamically evolving for several decades. Different scintillation crystals are used for this purpose along with photo signal receivers, such as vacuum photomultiplier tubes (PMT). Many studies are being performed in order to provide alternative devices for photon signal capture: PIN-diodes,avalanche photodiodes, semiconductor silicon photomultipliers. We study the applicability of a silicon PMT in employing highresolution crystals in space applications.
Instruments and Experimental Techniques | 2016
I. G. Mitrofanov; F. Fedosov; A. B. Sanin; B.N. Bakhtin; William V. Boynton; A. A. Vostrukhin; D. V. Golovin; A. S. Kosyrev; M. L. Litvak; A. Malakhov; T. McClanahan; M. I. Mokrousov; I. O. Nuzhdin; Richard D. Starr; V. I. Tret'yakov; V. N. Shvetsov; V.V. Shevchenko; K. Harshman
Results of physical calibrations of the LEND neutron telescope operating on board the NASA’s LRO lunar satellite since June 2009 are described. The main goal of the LEND telescope is to measure the epithermal neutron flux in polar areas of the lunar surface with a high (~10 km) resolution with the aim of determining the hydrogen distribution in the lunar regolith and detect the presence of water ice beds at the bottom of permanently shadowed lunar polar craters. The neutron detection efficiency and the effective area of the LEND detectors is experimentally estimated.