Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Accard is active.

Publication


Featured researches published by A. Accard.


IEEE Journal of Selected Topics in Quantum Electronics | 2007

Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55

F. Lelarge; B. Dagens; Jeremie Renaudier; Romain Brenot; A. Accard; F. van Dijk; D. Make; O. Le Gouezigou; J.-G. Provost; F. Poingt; J. Landreau; O. Drisse; E. Derouin; B. Rousseau; F. Pommereau; Guang-Hua Duan

This paper summarizes recent advances on InAs/InP quantum dash (QD) materials for lasers and amplifiers, and QD device performance with particular interest in optical communication. We investigate both InAs/InP dashes in a barrier and dashes in a well (DWELL) heterostructures operating at 1.5 mum. These two types of QDs can provide high gain and low losses. Continuous-wave (CW) room-temperature lasing operation on ground state of cavity length as short as 200 mum has been achieved, demonstrating the high modal gain of the active core. A threshold current density as low as 110 A/cm2 per QD layer has been obtained for infinite-length DWELL laser. An optimized DWELL structure allows achieving of a T0 larger than 100 K for broad-area (BA) lasers, and of 80 K for single-transverse-mode lasers in the temperature range between 25degC and 85degC. Buried ridge stripe (BRS)-type single-mode distributed feedback (DFB) lasers are also demonstrated for the first time, exhibiting a side-mode suppression ratio (SMSR) as high as 45 dB. Such DFB lasers allow the first floor-free 10-Gb/s direct modulation for back-to-back and transmission over 16-km standard optical fiber. In addition, novel results are given on gain, noise, and four-wave mixing of QD-based semiconductor optical amplifiers. Furthermore, we demonstrate that QD Fabry-Perot (FP) lasers, owing to the small confinement factor and the three-dimensional (3-D) quantification of electronic energy levels, exhibit a beating linewidth as narrow as 15 kHz. Such an extremely narrow linewidth, compared to their QW or bulk counterparts, leads to the excellent phase noise and time-jitter characteristics when QD lasers are actively mode-locked. These advances constitute a new step toward the application of QD lasers and amplifiers to the field of optical fiber communications


IEEE Photonics Technology Letters | 2005

\mu

F. Lelarge; B. Rousseau; B. Dagens; F. Poingt; F. Pommereau; A. Accard

Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QDs active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).


Optics Express | 2012

m

Ricardo Rosales; Stuart G. Murdoch; Regan Watts; Kamel Merghem; Anthony Martinez; Francois Lelarge; A. Accard; Liam P. Barry; A. Ramdane

Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP (100) quantum dots as active core

Ricardo Rosales; Kamel Merghem; Anthony Martinez; A. Akrout; J.-P. Tourrenc; A. Accard; F. Lelarge; A. Ramdane

This paper reports on recent results on passively mode-locked InAs/InP quantum-dot-based lasers. These low-dimensional structures have proved very attractive in improving most of the properties of these devices. Subpicosecond pulse generation at repetition rates up to beyond 300 GHz has readily been demonstrated. Ultranarrow RF linewidths reach record values of less than 1 kHz. Controlled optical feedback allows a further reduction of this linewidth yielding extremely low timing jitter. A comparison of single-section and standard two-section lasers is given for the first time. These performances open the way to various applications at 1.55 μm, including very high bit rate all-optical signal processing, frequency comb generation, radio over fiber, and low-noise all-optical oscillators.


IEEE Journal of Selected Topics in Quantum Electronics | 2014

High performance mode locking characteristics of single section quantum dash lasers.

Guang-Hua Duan; Christophe Jany; Alban Le Liepvre; A. Accard; M. Lamponi; D. Make; Peter Kaspar; Guillaume Levaufre; Nils Girard; F. Lelarge; Jean-Marc Fedeli; A. Descos; Badhise Ben Bakir; S. Messaoudene; Damien Bordel; Sylvie Menezo; Guilhem de Valicourt; Shahram Keyvaninia; Günther Roelkens; Dries Van Thourhout; David J. Thomson; F. Y. Gardes; Graham T. Reed

This paper summarizes recent advances of integrated hybrid InP/SOI lasers and transmitters based on wafer bonding. At first the integration process of III-V materials on silicon is described. Then the paper reports on the results of single wavelength distributed Bragg reflector lasers with Bragg gratings etched on silicon waveguides. We then demonstrate that, thanks to the high-quality silicon bend waveguides, hybrid III-V/Si lasers with two integrated intra-cavity ring resonators can achieve a wide thermal tuning range, exceeding the C band, with a side mode suppression ratio higher than 40 dB. Moreover, a compact array waveguide grating on silicon is integrated with a hybrid III-V/Si gain section, creating a wavelength-selectable laser source with 5 wavelength channels spaced by 400 GHz. We further demonstrate an integrated transmitter with combined silicon modulators and tunable hybrid III-V/Si lasers. The integrated transmitter exhibits 9 nm wavelength tunability by heating an intra-cavity ring resonator, high extinction ratio from 6 to 10 dB, and excellent bit-error-rate performance at 10 Gb/s.


Optics Express | 2012

InAs/InP Quantum-Dot Passively Mode-Locked Lasers for 1.55-μ m Applications

Martyn J. Fice; Efthymios Rouvalis; F. van Dijk; A. Accard; Francois Lelarge; Cyril C. Renaud; Guillermo Carpintero; A.J. Seeds

The broadband penetration and continuing growth of Internet traffic among residential and business customers are driving the migration of todays end users network access from cable to optical fiber and superbroadband wireless systems The integration of optical and wireless systems operating at much higher carrier frequencies in the millimeter-wave (mm-wave) range is considered to be one of the most promising solutions for increasing the existing capacity and mobility, as well as decreasing the costs in next-generation optical access networks. In this paper, several key enabling technologies for very high throughput wireless-over-fiber networks are reviewed, including photonic mm-wave generation based on external modulation or nonlinear effects, spectrum-efficient multicarrier orthogonal frequency-division multiplexing and single-carrier multilevel signal modulation. We also demonstrated some applications in wireless-over-fiber trials using these enabling techniques. The results show that the integrated systems are practical solutions to offer very high throughput wireless to end users in optically enabled wireless access networks.We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).


Proceedings of SPIE | 2014

Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon

Guang-Hua Duan; Christophe Jany; Alban Le Liepvre; A. Accard; M. Lamponi; D. Make; Peter Kaspar; Guillaume Levaufre; Nils Girard; Francois Lelarge; Jean-Marc Fedeli; S. Messaoudene; Damien Bordel; S. Olivier

This paper summarizes recent advances of integrated hybrid InP/SOI lasers and transmitters based on wafer bonding. At first the integration process of III-V materials on silicon is described. Then the paper reports on the results of single wavelength distributed Bragg reflector lasers with Bragg gratings etched on silicon waveguides. We then demonstrate that, thanks to the high-quality silicon bend waveguides, hybrid III-V/Si lasers with two integrated intra-cavity ring resonators can achieve a wide thermal tuning range, exceeding the C band, with a side mode suppression ratio higher than 40 dB. Moreover, a compact array waveguide grating on silicon is integrated with a hybrid III-V/Si gain section, creating a wavelength-selectable laser source with 5 wavelength channels spaced by 400 GHz. We further demonstrate an integrated transmitter with combined silicon modulators and tunable hybrid III-V/Si lasers. The integrated transmitter exhibits 9 nm wavelength tunability by heating an intra-cavity ring resonator, high extinction ratio from 6 to 10 dB, and excellent bit-error-rate performance at 10 Gb/s.


international topical meeting on microwave photonics | 2011

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system

Frederic van Dijk; A. Accard; Alain Enard; Olivier Drisse; D. Make; Francois Lelarge

We have developed a dual wavelength DFB laser for the generation of a widely tunable microwave signal. In order to obtain a narrow linewidth of the generated signal, we have focused the development of the source on the reduction of the linewidth of each generated wavelengths. The best results were obtained with a device using 2500 µm long DFB sections that generated linewidths narrower than 300 kHz. Beating the two wavelengths from this chip on a photodetector resulted in a beat note having a linewidth of 600 kHz. This microwave signal could be tuned from 3 to 20 GHz with a linewidth kept below 1 MHz.


international conference on group iv photonics | 2012

Hybrid III-V on silicon lasers for photonic integrated circuits on silicon

A. Le Liepvre; Christophe Jany; A. Accard; M. Lamponi; F. Poingt; D. Make; F. Lelarge; J.-M. Fedeli; S. Messaoudene; Damien Bordel; G.-H. Duan

A hybrid III-V on silicon laser, integrating two intra-cavity ring resonators, is fabricated by using a wafer bonding technique. It achieves a thermal tuning range of 45 nm, with side mode suppression ratio higher than 40 dB.


Applied Physics Letters | 2006

Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation

G. Moreau; S. Azouigui; D.-Y. Cong; Kamel Merghem; A. Martinez; G. Patriarche; A. Ramdane; F. Lelarge; B. Rousseau; B. Dagens; F. Poingt; A. Accard; F. Pommereau

The authors report the growth of 6-, 9-, and 12-layer InAs∕InP quantum-dash-in-a-well (DWELL) laser structures using gas source molecular beam epitaxy. Broad area laser performance has been investigated as a function of number of layers. The highest modal gain at 48cm−1 is achieved for an optimized nine-DWELL layer structure. The effect of layer stacking and p-type doping on the characteristic temperature is also reported. Nine-DWELL layer single mode ridge waveguide lasers showed high slope efficiency (0.2W∕A per facet) and output power (Pout=20mW), close to those of conventional quantum well devices.

Collaboration


Dive into the A. Accard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ramdane

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge