A. Ain
Inter-University Centre for Astronomy and Astrophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Ain.
Physical Review D | 2015
B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; B. Allen; A. Allocca; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; C. C. Arceneaux; J. S. Areeda; N. Arnaud; K. G. Arun; G. Ashton
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
Physical Review D | 2015
E. Thrane; Sanjit Mitra; N. Christensen; V. Mandic; A. Ain
Gravitational-wave radiometry is a powerful tool by which weak signals with unknown signal morphologies are recovered through a process of cross correlation. Radiometry has been used, e.g., to search for persistent signals from known neutron stars such as Scorpius X-1. In this paper, we demonstrate how a more ambitious search--for persistent signals from unknown neutron stars--can be efficiently carried out using folded data, in which an entire ~year-long observing run is represented as a single sidereal day. The all-sky, narrowband radiometer search described here will provide a computationally tractable means to uncover gravitational-wave signals from unknown, nearby neutron stars in binary systems, which can have modulation depths of ~0.1-2 Hz. It will simultaneously provide a sensitive search algorithm for other persistent, narrowband signals from unexpected sources.
Physical Review D | 2015
A. Ain; Prathamesh Dalvi; Sanjit Mitra
Gravitational Waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole dataset for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and non-stationary noise. We implement this on LIGOs fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.
Physical Review D | 2015
A. Ain; Shilpa Kastha; Sanjit Mitra
Recent exoplanet surveys have predicted a very large population of planetary systems in our galaxy, more than one planet per star on the average, perhaps totalling about two hundred billion. These surveys, based on electro-magnetic observations, are limited to a very small neighbourhood of the solar system and the estimations rely on the observations of only a few thousand planets. On the other hand, orbital motions of planets around stars are expected to emit gravitational waves (GW), which could provide information about the planets not accessible to electro-magnetic astronomy. The cumulative effect of the planets, with periods ranging from few hours to several years, is expected to create a stochastic GW background (SGWB). We compute the characteristic GW strain of this background based on the observed distribution of planet parameters. We also show that the integrated extragalactic background is comparable or less than the galactic background at different frequencies. Our estimate shows that the net background is significantly below the sensitivities of the proposed GW experiments in different frequency bands. However, we notice that the peak of the spectrum, at around
Physical Review D | 2018
A. Ain; Jishnu Suresh; Sanjit Mitra
10^{-5}
Archive | 2018
A. Ain; Jishnu Suresh; Sanjit Mitra
Hz, is not too far below the proposed space based GW missions. A future space based mission may be able to observe or tightly constrain this signal, which will possibly be the only way to probe the galactic population of exoplanets as a whole.