Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. B. Strathe is active.

Publication


Featured researches published by A. B. Strathe.


Global Change Biology | 2014

Prediction of enteric methane emissions from cattle

L.E. Moraes; A. B. Strathe; J.G. Fadel; D.P. Casper; E. Kebreab

Agriculture has a key role in food production worldwide and it is a major component of the gross domestic product of several countries. Livestock production is essential for the generation of high quality protein foods and the delivery of foods in regions where animal products are the main food source. Environmental impacts of livestock production have been examined for decades, but recently emission of methane from enteric fermentation has been targeted as a substantial greenhouse gas source. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. The predictive ability of current methane emission models remains poor. Moreover, the availability of information on livestock production systems has increased substantially over the years enabling the development of more detailed methane prediction models. In this study, we have developed and evaluated prediction models based on a large database of enteric methane emissions from North American dairy and beef cattle. Most probable models of various complexity levels were identified using a Bayesian model selection procedure and were fitted under a hierarchical setting. Energy intake, dietary fiber and lipid proportions, animal body weight and milk fat proportion were identified as key explanatory variables for predicting emissions. Models here developed substantially outperformed models currently used in national greenhouse gas inventories. Additionally, estimates of repeatability of methane emissions were lower than the ones from the literature and multicollinearity diagnostics suggested that prediction models are stable. In this context, we propose various enteric methane prediction models which require different levels of information availability and can be readily implemented in national greenhouse gas inventories of different complexity levels. The utilization of such models may reduce errors associated with prediction of methane and allow a better examination and representation of policies regulating emissions from cattle.


Journal of Animal Science | 2012

Predicting milk yield and composition in lactating sows: a Bayesian approach.

A. V. Hansen; A. B. Strathe; E. Kebreab; P. K. Theil

The objective of this study was to develop a framework describing the milk production curve in sows as affected by parity, method of milk yield (MY) determination, litter size (LS), and litter gain (LG). A database containing data on LS, LG, dietary protein and fat content, MY, and composition measured on more than 1 d during lactation and method for determining MY from peer reviewed publications and individual sow data from 3 studies was constructed. A Bayesian hierarchical model was developed to analyze milk production data. The classical Wood curve was used to model time trends in MY during lactation, and it was re-parameterized expressing the natural logarithm of MY values at d 5, 20, and 30 as functional parameters. The model incorporated random effects of experiment, sow nested within experiment, and fixed effects of LS, LG, parity, and method through the functional parameters of the Wood curve. A second set of models were constructed to analyze milk composition data, including day in milk, LS, dietary protein, and fat contents. Four scenarios with different LG and LS were constructed using the framework to estimate the energy output in milk at different days during lactation. The estimated energy output was compared with energy output values calculated using the 1998 NRC method. Milk yield was underestimated by approximately 20% with the weigh-suckle-weigh technique compared with the deuterium oxide dilution technique (P < 0.001). The mean LG and LS for the dataset were 2.05 kg/d (1.0; 3.3) and 9.5 piglets (5; 14), respectively. The MY was affected by LS on d 5 and 20 (P < 0.001) and by LG on d 20 (P < 0.001) and d 30 (P = 0.004). The mean time to peak lactation was 18.7 d (SD = 1.06) postpartum and mean MY at peak lactation was 9.23 kg (SD = 0.14). The average protein, lactose, and fat content of milk was 5.22 (SD = 0.06), 5.41 (SD = 0.08), and 7.32% (SD = 0.17%), respectively. The NE requirement for lactation increased from d 5 to 20 because of increased MY. Requirements also increased with increasing LG and LS. The framework could be used to predict energy and protein requirements for lactation under different production expectations and can be incorporated into a whole animal model for determination of energy and nutrient requirements for lactating sows, which can optimize sow performance and longevity.


BMC Genetics | 2014

Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs.

Duy Ngoc Do; Tage Ostersen; A. B. Strathe; Thomas Mark; Just Jensen; Haja N. Kadarmideen

BackgroundFeed efficiency is one of the major components determining costs of animal production. Residual feed intake (RFI) is defined as the difference between the observed and the expected feed intake given a certain production. Residual feed intake 1 (RFI1) was calculated based on regression of individual daily feed intake (DFI) on initial test weight and average daily gain. Residual feed intake 2 (RFI2) was as RFI1 except it was also regressed with respect to backfat (BF). It has been shown to be a sensitive and accurate measure for feed efficiency in livestock but knowledge of the genomic regions and mechanisms affecting RFI in pigs is lacking. The study aimed to identify genetic markers and candidate genes for RFI and its component traits as well as pathways associated with RFI in Danish Duroc boars by genome-wide associations and systems genetic analyses.ResultsPhenotypic and genotypic records (using the Illumina Porcine SNP60 BeadChip) were available on 1,272 boars. Fifteen and 12 loci were significantly associated (pu2009<u20091.52u2009×u200910-6) with RFI1 and RFI2, respectively. Among them, 10 SNPs were significantly associated with both RFI1 and RFI2 implying the existence of common mechanisms controlling the two RFI measures. Significant QTL regions for component traits of RFI (DFI and BF) were detected on pig chromosome (SSC) 1 (for DFI) and 2 for (BF). The SNPs within MAP3K5 and PEX7 on SSC 1, ENSSSCG00000022338 on SSC 9, and DSCAM on SSC 13 might be interesting markers for both RFI measures. Functional annotation of genes in 0.5xa0Mb size flanking significant SNPs indicated regulation of protein and lipid metabolic process, gap junction, inositol phosphate metabolism and insulin signaling pathway are significant biological processes and pathways for RFI, respectively.ConclusionsThe study detected novel genetic variants and QTLs on SSC 1, 8, 9, 13 and 18 for RFI and indicated significant biological processes and metabolic pathways involved in RFI. The study also detected novel QTLs for component traits of RFI. These results improve our knowledge of the genetic architecture and potential biological pathways underlying RFI; which would be useful for further investigations of key candidate genes for RFI and for development of biomarkers.


PLOS ONE | 2013

Genome-Wide Association Study Reveals Genetic Architecture of Eating Behavior in Pigs and Its Implications for Humans Obesity by Comparative Mapping

Duy Ngoc Do; A. B. Strathe; Tage Ostersen; Just Jensen; Thomas Mark; Haja N. Kadarmideen

This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64–65 Mb on SSC 1, 124–130 Mb on SSC 8, 63–68 Mb on SSC 11, 32–39 Mb and 59–60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans.


Frontiers in Genetics | 2014

Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

Duy Ngoc Do; A. B. Strathe; Tage Ostersen; Sameer D. Pant; Haja N. Kadarmideen

Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.


Journal of Dairy Science | 2013

Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis

Jad Ranga Niroshan Appuhamy; A. B. Strathe; Susantha Jayasundara; Claudia Wagner-Riddle; J. Dijkstra; E. Kebreab

Monensin is a widely used feed additive with the potential to minimize methane (CH4) emissions from cattle. Several studies have investigated the effects of monensin on CH4, but findings have been inconsistent. The objective of the present study was to conduct meta-analyses to quantitatively summarize the effect of monensin on CH4 production (g/d) and the percentage of dietary gross energy lost as CH4 (Ym) in dairy cows and beef steers. Data from 22 controlled studies were used. Heterogeneity of the monensin effects were estimated using random effect models. Due to significant heterogeneity (>68%) in both dairy and beef studies, the random effect models were then extended to mixed effect models by including fixed effects of DMI, dietary nutrient contents, monensin dose, and length of monensin treatment period. Monensin reduced Ym from 5.97 to 5.43% and diets with greater neutral detergent fiber contents (g/kg of dry matter) tended to enhance the monensin effect on CH4 in beef steers. When adjusted for the neutral detergent fiber effect, monensin supplementation [average 32 mg/kg of dry matter intake (DMI)] reduced CH4 emissions from beef steers by 19±4 g/d. Dietary ether extract content and DMI had a positive and a negative effect on monensin in dairy cows, respectively. When adjusted for these 2 effects in the final mixed-effect model, monensin feeding (average 21 mg/kg of DMI) was associated with a 6±3 g/d reduction in CH4 emissions in dairy cows. When analyzed across dairy and beef cattle studies, DMI or monensin dose (mg/kg of DMI) tended to decrease or increase the effect of monensin in reducing methane emissions, respectively. Methane mitigation effects of monensin in dairy cows (-12±6 g/d) and beef steers (-14±6 g/d) became similar when adjusted for the monensin dose differences between dairy cow and beef steer studies. When adjusted for DMI differences, monensin reduced Ym in dairy cows (-0.23±0.14) and beef steers (-0.33±0.16). Monensin treatment period length did not significantly modify the monensin effects in dairy cow or beef steer studies. Overall, monensin had stronger antimethanogenic effects in beef steers than dairy cows, but the effects in dairy cows could potentially be improved by dietary composition modifications and increasing the monensin dose.


Current Opinion in Biotechnology | 2012

Animal production for efficient phosphate utilization: From optimized feed to high efficiency livestock

E. Kebreab; A. V. Hansen; A. B. Strathe

Phosphorus (P) is an essential nutrient for livestock but its efficiency of utilization is below 40%, contributing to environmental issues. In this review, we summarize recent approaches to optimize P availability in livestock diets and improve its utilization efficiency. Phase feeding could potentially reduce P excretion by 20%. Addition of phytase enzymes to diets increased P availability from 42 to 95%. Low phytate transgenic plants and transgenic animals increased P availability by 14% and 52-99%, respectively. In practice, a combination of phase feeding and enzymes has the highest potential for P reduction but legislation and ethics implications will prevent using transgenic animals in the short term. Functional and nutritional genomics may provide tools to improve efficiency in the future.


Journal of Animal Science | 2013

Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds

Duy Ngoc Do; A. B. Strathe; Just Jensen; Thomas Mark; Haja N. Kadarmideen

Residual feed intake (RFI) is commonly used as a measure of feed efficiency at a given level of production. A total of 16,872 pigs with their pedigree traced back as far as possible was used to estimate genetic parameters for RFI, growth performance, food conversion ratio (FCR), body conformation, and feeding behavior traits in 3 Danish breeds [Duroc (DD), Landrace (LL), and Yorkshire (YY)]. Two measures of RFI were considered: residual feed intake 1 (RFI1) was calculated based on regression of daily feed intake (DFI) from 30 to 100 kg on initial test weight and ADG from 30 to 100 kg (ADG2). Residual feed intake 2 (RFI2) was as RFI1, except it was also regressed with respect to backfat (BF). The estimated heritabilities for RFI1 and RFI2 were 0.34 and 0.38 in DD, 0.34 and 0.36 in LL, and 0.39 and 0.40 in YY, respectively. The heritabilities ranged from 0.32 (DD) to 0.54 (LL) for ADG2, from 0.54 (DD) to 0.67 (LL) for BF, and from 0.13 (DD) to 0.19 (YY) for body conformation. Feeding behavior traits including DFI, number of visits to feeder per day (NVD), total time spent eating per day (TPD), feed intake rate (FR), feed intake per visit (FPV), and time spent eating per visit (TPV) were moderately to highly heritable. Residual feed intake 2 was genetically independent of ADG2 and BF in all breeds, except it had low genetic correlation to ADG2 in YY (0.2). Residual feed intake 1 was also genetically independent of ADG2 in DD and LL. Both RFI traits had strong genetic correlations with DFI (0.85 to 0.96) and FCR (0.76 to 0.99). They had low or no genetic correlations with feeding behavior traits. Unfavorable genetic correlations were found between ADG2 and both BF and DFI. Among feeding behavior traits, DFI had low genetic correlations to other traits in all breeds. High and negative genetic correlations were also found between TPD with FR (-0.79 in YY to -0.88 in DD), NVD, and TPD (-0.91 in DD to -0.94 in YY) and between NVD and FPV (-0.83 in DD to -0.91 in YY) in all breeds. The genetic trend for feed efficiency was favorable in all breeds regardless of the definition of feed efficiency used. In summary, RFI1 and RFI2 were heritable and selection for reduced RFI2 can be performed without adversely affecting ADG and BF and could replace FCR in the selection index for the Danish pig breeds. Selection could also be based on RFI1 for breeds with fewer concerns about a negative effect of BF or for breeds that do not have BF records.


Journal of Animal Science | 2010

A multilevel nonlinear mixed-effects approach to model growth in pigs.

A. B. Strathe; A. Danfær; Helle Sørensen; E. Kebreab

Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40 pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because it allowed for estimation of all growth profiles simultaneously, and different sources of variation (i.e., sex, pig, and litter effects) were incorporated directly into the parameters. Furthermore, variance in-homogeneity and within-pig correlation were introduced to the functions. Inclusion of a variance of power function and a continuous autoregressive process of first order rendered a substantially improved fit to data for all 4 growth functions. The Lopez function provided the best fit to the data set and was used for characterizing mean growth curves for the 3 sexes (barrows, boars, and gilts). It was estimated that the maximum growth rate occurs at 117, 134, and 96 kg of BW for barrows, boars, and gilts, respectively. Hence, the gilts reached their maximum growth rate at an earlier stage in life compared with boars. Mature size of pigs varied systematically with sex and was estimated to be 466, 537, and 382 kg of BW for the barrows, boars, and gilts, respectively. These estimates are significantly affected by the duration of the experimental period, and it is recommended that future studies looking at estimating the mature size in animals are conducted long enough so that the BW visually stabilizes. Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures.


Poultry Science | 2010

Flexible alternatives to the Gompertz equation for describing growth with age in turkey hens

T. Porter; E. Kebreab; H. Darmani Kuhi; Secundino López; A. B. Strathe

A total of 49 profiles of growing turkey hens from commercial flocks were used in this study. Three flexible growth functions (von Bertalanffy, Richards, and Morgan) were evaluated with regard to their ability to describe the relationship between BW and age and were compared with the Gompertz equation with its fixed point of inflection, which might result in its overestimation. For each function, 4 ways of analysis were implemented. A basic model was fitted first, followed by implementation of a first-order autoregressive correlation structure. A model that considered only mature BW varied with year and another that considered only the rate coefficient varied with different years were applied. The results showed that the fixed point of inflection of the Gompertz equation can be a limitation and that the relationship between BW and age in turkeys was best described using flexible growth functions. However, the Richards equation failed to converge when fitted to the turkey growth data; therefore, it was not considered further. Inclusion of an autoregressive process of the first order rendered a substantially improved fit to data for the 3 growth functions. The Morgan equation provided the best fit to the data set and was used for characterizing mean growth curves for the 7 yr of production. It was estimated that the maximum growth rate occurred at 3.74, 3.65, 3.99, 4.18, 4.05, 4.01, and 3.77 kg BW for production years from 1997 to 2003, respectively. It is recommended that flexible growth functions should be considered as an alternative to the simpler functions (with a fixed point of inflection) for describing the relationship between BW and age in turkeys because they were easier to fit and very often gave a closer fit to data points because of their flexibility, and therefore a smaller residual MS value, than simpler models. It can also be recommended that studies should consider adding a first-order autoregressive process when analyzing repeated measures data with nonlinear models.

Collaboration


Dive into the A. B. Strathe's collaboration.

Top Co-Authors

Avatar

E. Kebreab

University of California

View shared research outputs
Top Co-Authors

Avatar

J.G. Fadel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Dijkstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Duy Ngoc Do

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Mark

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Secundino López

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

L.E. Moraes

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge