Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Bruce Downie is active.

Publication


Featured researches published by A. Bruce Downie.


The Plant Cell | 2004

The Embryo MADS Domain Protein AGAMOUS-Like 15 Directly Regulates Expression of a Gene Encoding an Enzyme Involved in Gibberellin Metabolism

Huai Wang; Leonardo V. Caruso; A. Bruce Downie; Sharyn E. Perry

AGL15 (for AGAMOUS-Like 15) is a member of the MADS domain family of DNA binding transcriptional regulators that accumulates to its highest amounts during embryo development. To better understand how AGL15 functions, a chromatin immunoprecipitation approach was used to identify directly regulated genes. One DNA fragment that coprecipitated with AGL15 corresponded to a portion of the regulatory region of a gene named DTA1 (for Downstream Target of AGL15-1). The expression of DTA1 was positively correlated with AGL15 abundance during embryogenesis. In this report, a cis element for response to AGL15 was identified, and the activity of DTA1 as a gibberellin (GA) 2-oxidase was confirmed. DTA1 corresponds to AtGA2ox6 and was renamed to indicate this identity. Further experiments related the function of AtGA2ox6 to regulation by AGL15. Constitutive expression of AGL15 and of AtGA2ox6 altered endogenous GA amounts and caused GA-deficient phenotypes in Arabidopsis thaliana that could be at least partially rescued by application of biologically active GA. The phenotype of plants with decreased expression of AtGA2ox6 was the converse of plants overexpressing AtGA2ox6 in terms of seed germination attributes and effects on somatic embryo production.


Plant Physiology | 2011

Subfunctionalization of Cellulose Synthases in Seed Coat Epidermal Cells Mediates Secondary Radial Wall Synthesis and Mucilage Attachment

Venugopal Mendu; Jonathan S. Griffiths; Staffan Persson; Jozsef Stork; A. Bruce Downie; Cătălin Voiniciuc; George W. Haughn; Seth DeBolt

Arabidopsis (Arabidopsis thaliana) epidermal seed coat cells follow a complex developmental program where, following fertilization, cells of the ovule outer integument differentiate into a unique cell type. Two hallmarks of these cells are the production of a doughnut-shaped apoplastic pocket filled with pectinaceous mucilage and the columella, a thick secondary cell wall. Cellulose is thought to be a key component of both these secondary cell wall processes. Here, we investigated the role of cellulose synthase (CESA) subunits CESA2, CESA5, and CESA9 in the seed coat epidermis. We characterized the roles of these CESA proteins in the seed coat by analyzing cell wall composition and morphology in cesa mutant lines. Mutations in any one of these three genes resulted in lower cellulose content, a loss of cell shape uniformity, and reduced radial wall integrity. In addition, we found that attachment of the mucilage halo to the parent seed following extrusion is maintained by cellulose-based connections requiring CESA5. Hence, we show that cellulose fulfills an adhesion role between the extracellular mucilage matrix and the parent cell in seed coat epidermal cells. We propose that mucilage remains attached to the seed coat through interactions between components in the seed mucilage and cellulose. Our data suggest that CESA2 and CESA9 serve in radial wall reinforcement, as does CESA5, but CESA5 also functions in mucilage biosynthesis. These data suggest unique roles for different CESA subunits in one cell type and illustrate a complex role for cellulose biosynthesis in plant developmental biology.


Plant Physiology | 2003

Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds

Kent J. Bradford; A. Bruce Downie; Oliver H. Gee; Veria Y. Alvarado; Hong Yang; Peetambar Dahal

The SNF1/AMP-activated protein kinase subfamily plays central roles in metabolic and transcriptional responses to nutritional or environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, activating and anchoring subunits associate with and regulate the activity, substrate specificity, and cellular localization of the kinase subunit in response to changing nutrient sources or energy demands, and homologous SNF1-related kinase (SnRK1) proteins are present in plants. We isolated cDNAs corresponding to the kinase (LeSNF1), regulatory (LeSNF4), and localization (LeSIP1 and LeGAL83) subunits of the SnRK1 complex from tomato (Lycopersicon esculentum Mill.). LeSNF1 and LeSNF4 complemented yeast snf1 and snf4 mutants and physically interacted with each other and with LeSIP1 in a glucose-dependent manner in yeast two-hybrid assays. LeSNF4 mRNA became abundant at maximum dry weight accumulation during seed development and remained high when radicle protrusion was blocked by abscisic acid (ABA), water stress, far-red light, or dormancy, but was low or undetected in seeds that had completed germination or in gibberellin (GA)-deficient seeds stimulated to germinate by GA. In leaves, LeSNF4 was induced in response to ABA or dehydration. In contrast, LeSNF1 and LeGAL83 genes were essentially constitutively expressed in both seeds and leaves regardless of the developmental, hormonal, or environmental conditions. Regulation of LeSNF4 expression by ABA and GA provides a potential link between hormonal and sugar-sensing pathways controlling seed development, dormancy, and germination.


Plant Physiology | 2004

A Second Protein l-Isoaspartyl Methyltransferase Gene in Arabidopsis Produces Two Transcripts Whose Products Are Sequestered in the Nucleus

Qilong Xu; Marisa P. Belcastro; Sarah T. Villa; Randy D. Dinkins; Steven Clarke; A. Bruce Downie

The spontaneous and deleterious conversion of l-asparaginyl and l-aspartyl protein residues to l-iso-Asp or d-Asp occurs as proteins age and is accelerated under stressful conditions. Arabidopsis (Arabidopsis L. Heynh.) contains two genes (At3g48330 and At5g50240) encoding protein-l-isoaspartate methyltransferase (EC 2.1.1.77; PIMT), an enzyme capable of correcting this damage. The gene located on chromosome 5 (PIMT2) produces two proteins differing by three amino acids through alternative 3′ splice site selection in the first intron. Recombinant protein from both splicing variants has PIMT activity. Subcellular localization using cell fractionation followed by immunoblot detection, as well as confocal visualization of PIMT:GFP fusions, demonstrated that PIMT1 is cytosolic while a canonical nuclear localization signal, present in PIMT2ψ and the shorter PIMT2ω, is functional. Multiplex reverse transcription-PCR was used to establish PIMT1 and PIMT2 transcript presence and abundance, relative to β-TUBULIN, in various tissues and under a variety of stresses imposed on seeds and seedlings. PIMT1 transcript is constitutively present but can increase, along with PIMT2, in developing seeds presumably in response to increasing endogenous abscisic acid (ABA). Transcript from PIMT2 also increases in establishing seedlings due to exogenous ABA and applied stress presumably through an ABA-dependent pathway. Furthermore, cleaved amplified polymorphic sequences from PIMT2 amplicons determined that ABA preferentially enhances the production of PIMT2ω transcript in leaves and possibly in tissues other than germinating seeds.


The Plant Cell | 2014

A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination

Jose M. Barrero; A. Bruce Downie; Qian Xu; Frank Gubler

This work reveals that the photoreceptor CRYPTOCHROME1 (CRY1), but not CRY2, is involved in the perception of blue light in dormant barley grains, which inhibits germination by impeding ABA decline in the embryo. It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains.


Seed Science Research | 2003

Seed germination of ethylene perception mutants of tomato and Arabidopsis

Gunching Siriwitayawan; Robert L. Geneve; A. Bruce Downie

The involvement of ethylene in determining the time to radicle protrusion was investigated in ethyleneinsensitive gain-of-function (GOF) receptor mutants in tomato and Arabidopsis, as well as in single and double loss-of-function (LOF) receptor mutants in Arabidopsis. Because ethylene evolution from seeds is coincident with radicle protrusion, and the ability to convert 1aminocyclopropane-1-carboxylic acid (ACC) to ethylene is diagnostic for seed vigour, it was hypothesized that ethylene-insensitive mutants would require more time to complete germination compared to wild-type seeds. Mutant Never Ripe (Nr) tomato seeds from two genetic backgrounds refuted this hypothesis, while experiments with wild-type seeds, treated with the ethylene action inhibitors, 2,5-norbornadiene or silver thiosulphate, supported it. However, reciprocal crosses between wildtype and Nr demonstrated that ethylene insensitivity during seed development determined subsequent time to complete germination, rather than the ability of the embryo/endosperm to perceive ethylene in the mature seed during germination. Additionally, seed quality, determined by standard vigour tests, was reduced in Nr compared to wild-type seeds, establishing a disconnection between rapid completion of germination and seed vigour. In Arabidopsis, all ethylene-insensitive GOF, and five of six single LOF mutants, required more time to complete 50% radicle protrusion, while double LOF mutants required the same, or less, time to complete germination compared to wild-type seeds. These findings support a role for ethylene perception in determining the length of time Arabidopsis seeds remain in the lag phase prior to radicle protrusion.


Journal of Biological Chemistry | 2010

Substrates of the Arabidopsis thaliana Protein Isoaspartyl Methyltransferase 1 Identified Using Phage Display and Biopanning

Tingsu Chen; Nihar R. Nayak; Susmita Maitra Majee; Jonathan D. Lowenson; Kim R. Schäfermeyer; Alyssa C. Eliopoulos; Taylor D. Lloyd; Randy D. Dinkins; Sharyn E. Perry; Nancy R. Forsthoefel; Steven Clarke; Daniel M. Vernon; Zhaohui Sunny Zhou; Tomas Rejtar; A. Bruce Downie

The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.


Functional Plant Biology | 2012

The role of SORBITOL DEHYDROGENASE in Arabidopsis thaliana

Marta Nosarzewski; A. Bruce Downie; Benhong Wu; Douglas D. Archbold

SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14) catalyses the interconversion of polyols and ketoses (e.g. sorbitol ⟷ fructose). Using two independent Arabidopsis thaliana (L.) Heynh. sdh knockout mutants, we show that SDH (At5g51970) plays a primary role in sorbitol metabolism as well as an unexpected role in ribitol metabolism. Sorbitol content increased in both wild-type (WT) and mutant plant leaves during drought stress, but mutants showed a dramatically different phenotype, dying even if rewatered. The lack of functional SDH in mutant plants was accompanied by accumulation of foliar sorbitol and at least 10-fold more ribitol, neither of which decreased in mutant plants after rewatering. In addition, mutant plants were uniquely sensitive to ribitol in a concentration-dependent manner, which either prevented them from completing seed germination or inhibited seedling development, effects not observed with other polyols or with ribitol-treated WT plants. Ribitol catabolism may occur solely through SDH in A. thaliana, though at only 30% the rate of that for sorbitol. The results indicate a role for SDH in metabolism of sorbitol to fructose and in ribitol conversion to ribulose in A. thaliana during recovery from drought stress.


Biotechnology for Biofuels | 2013

Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties

Carloalberto Petti; Anne E. Harman-Ware; Mizuki Tateno; Rekha Kushwaha; A. Bruce Downie; Mark Crocker; Seth DeBolt

BackgroundImproving saccharification efficiency in bioenergy crop species remains an important challenge. Here, we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy feedstock.ResultsIt was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems, antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type. Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation between increased saccharification properties and reduced lignin instead of changes in the cellulose composition and/or structure.ConclusionAntithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of stem cellulose to fermentable sugars in the C4 grass Sorghum.


Plant Physiology | 2003

Communication between the Maternal Testa and the Embryo and/or Endosperm Affect Testa Attributes in Tomato

A. Bruce Downie; Deqing Zhang; Lynnette M.A. Dirk; Richard Thacker; Janet Pfeiffer; Jennifer Drake; Avraham A. Levy; D. Allan Butterfield; Jack W. Buxton; John C. Snyder

Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μm gibberellin4 + 7 were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on gibberellin4 + 7 did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N2. The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process.

Collaboration


Dive into the A. Bruce Downie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qilong Xu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Clarke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge