Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. C. Edge is active.

Publication


Featured researches published by A. C. Edge.


Monthly Notices of the Royal Astronomical Society | 2007

The UKIRT infrared deep sky survey (UKIDSS)

A. Lawrence; S. J. Warren; Omar Almaini; A. C. Edge; Nigel Hambly; R. F. Jameson; Philip W. Lucas; M. Casali; A. J. Adamson; Simon Dye; James P. Emerson; S. Foucaud; Paul C. Hewett; Paul Hirst; Simon T. Hodgkin; M. J. Irwin; N. Lodieu; Richard G. McMahon; Chris Simpson; Ian Smail; D. Mortlock; M. Folger

Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007


Monthly Notices of the Royal Astronomical Society | 1996

Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data — I. The sample

Harald Ebeling; W. Voges; H. Böhringer; A. C. Edge; John P. Huchra; Ulrich G. Briel

We present an essentially complete, all-sky, X-ray flux limi ted sample of 242 Abell clusters of galaxies (six of which are double) compiled from ROSAT All-Sky Survey data. Our sample is uncontaminated in the sense that systems featuring prominent X-ray point sources such as AGN or foreground stars have been removed. The sample is limited to high Galactic latitudes (jbj� 20 � ), the nominal redshift range of the ACO catalogue of z � 0:2, and X-ray fluxes above 5:0�10 12 erg cm 2 s 1 in the 0.1 ‐ 2.4 keV band. Due to the X-ray flux limit, our sample consists, at intermediate and high redshifts, ex clusively of very X-ray luminous clusters. Since the latter tend to be also optically rich, th e sample is not affected by the optical selection effects and in particular not by the volume incompleteness known to be present in the Abell and ACO catalogues for richness class 0 and 1 clusters. Our sample is the largest X-ray flux limited sample of galaxy c lusters compiled to date and will allow investigations of unprecedented statistica l quality into the properties and distribution of rich clusters in the local Universe.


Monthly Notices of the Royal Astronomical Society | 2006

The SCUBA Half-Degree Extragalactic Survey - II. Submillimetre maps, catalogue and number counts

K. Coppin; Edward L. Chapin; A. M. J. Mortier; S. E. Scott; Colin Borys; James Dunlop; M. Halpern; David H. Hughes; Alexandra Pope; D. Scott; S. Serjeant; J. Wagg; D. M. Alexander; Omar Almaini; Itziar Aretxaga; T. Babbedge; Philip Best; A. W. Blain; S. C. Chapman; D. L. Clements; M. Crawford; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; E. Gaztanaga; Walter Kieran Gear; G. L. Granato; T. R. Greve; M. Fox

We present maps, source catalogue and number counts of the largest, most complete and unbiased extragalactic submillimetre survey: the 850-μm SCUBA Half-Degree Extragalactic Survey (SHADES). Using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT), SHADES mapped two separate regions of sky: the Subaru/XMM–Newton Deep Field (SXDF) and the Lockman Hole East (LH). Encompassing 93 per cent of the overall acquired data (i.e. data taken up to 2004 February 1), these SCUBA maps cover 720 arcmin2 with a rms noise level of about 2 mJy and have uncovered >100 submillimetre galaxies. In order to ensure the utmost robustness of the resulting source catalogue, data reduction was independently carried out by four subgroups within the SHADES team, providing an unprecedented degree of reliability with respect to other SCUBA catalogues available from the literature. Individual source lists from the four groups were combined to produce a robust 120-object SHADES catalogue; an invaluable resource for follow-up campaigns aiming to study the properties of a complete and consistent sample of submillimetre galaxies. For the first time, we present deboosted flux densities for each submillimetre galaxy found in a large survey. Extensive simulations and tests were performed separately by each group in order to confirm the robustness of the source candidates and to evaluate the effects of false detections, completeness and flux density boosting. Corrections for these effects were then applied to the data to derive the submillimetre galaxy source counts. SHADES has a high enough number of detected sources that meaningful differential counts can be estimated, unlike most submillimetre surveys which have to consider integral counts. We present differential and integral source number counts and find that the differential counts are better fit with a broken power law or a Schechter function than with a single power law; the SHADES data alone significantly show that a break is required at several mJy, although the precise position of the break is not well constrained. We also find that a 850-μm survey complete down to 2 mJy would resolve 20–30 per cent of the far-infrared background into point sources.


Monthly Notices of the Royal Astronomical Society | 1998

A ROSAT study of the cores of clusters of galaxies - I. Cooling flows in an X-ray flux-limited sample

C. B. Peres; Andrew C. Fabian; A. C. Edge; S. W. Allen; R. M. Johnstone; D. A. White

ABSTRA C T This is the first part of a study of the detailed X-ray properties of the cores of nearby clusters. We have used the flux-limited sample of 55 clusters listed by Edge et al., and archival and proprietary data from the ROSAT observatory. In this paper an X-ray spatial analysis based on the surface-brightness-deprojection technique is applied to the clusters in the sample with the aim of studying their cooling flow properties. We determine the fraction of cooling flows in this sample to be 70‐90 per cent, and estimate the contribution of the flow region to the cluster Xray luminosity. We show that the luminosity within a strong cooling flow can account for up to 70 per cent of a cluster X-ray bolometric luminosity. Our analysis indicates that about 40 per cent of the clusters in the sample have flows depositing more than 100 M( yr π1 throughout the cooling region, and that these possibly have been undisturbed for many Gyr, confirming that cooling flows are the natural state of cluster cores. New cooling flows in the sample are presented, and previously ambiguous ones are clarified. We have constructed a catalogue of some intracluster medium properties for the clusters in this sample. The profiles of the mass deposited from cooling flows are analysed, and evidence is presented for the existence of breaks in some of the profiles. Comparison is made to recent optical and radio data. We crosscorrelate our sample with the Green Bank, NVSS and FIRST surveys, and with the volumelimited sample of brightest cluster galaxies presented by Lauer & Postman. Although weak trends exist, no strong correlation between optical magnitude or radio power of the brightest cluster galaxy and the strength of the flow is found.


The Astrophysical Journal | 2001

Macs: a quest for the most massive galaxy clusters in the universe

Harald Ebeling; A. C. Edge; J. P. Henry

We describe the design and current status of a new X-ray cluster survey aimed at the compilation of a statistically complete sample of very X-ray luminous (and thus, by inference, massive), distant clusters of galaxies. The primary goal of the Massive Cluster Survey (MACS) is to increase the number of known massive clusters at z > 0.3 from a handful to hundreds. Upon completion of the survey, the MACS cluster sample will greatly improve our ability to study quantitatively the physical and cosmological parameters driving cluster evolution at redshifts and luminosities poorly sampled by all existing surveys. To achieve these goals, we apply an X-ray flux and X-ray hardness ratio cut to select distant cluster candidates from the ROSAT Bright Source Catalogue. Starting from a list of more than 5000 X-ray sources within the survey area of 22,735 deg2, we use positional cross-correlations with public catalogs of Galactic and extragalactic objects, reference to Automated Plate Measuring Machine (APM) colors, visual inspection of Digitized Sky Survey images, extensive CCD imaging, and finally spectroscopic observations with the University of Hawaiis 2.2 m and the Keck 10 m telescopes to compile the final cluster sample. We discuss in detail the X-ray selection procedure and the resulting selection function and present model predictions for the number of distant clusters expected to emerge from MACS. At the time of this writing the MACS cluster sample comprises 101 spectroscopically confirmed clusters at 0.3 ≤ z ≤ 0.6; more than two-thirds of these are new discoveries. Our preliminary sample is already 15 times larger than that of the EMSS in the same redshift and X-ray luminosity range.


Monthly Notices of the Royal Astronomical Society | 1999

The ROSAT Brightest Cluster Sample – III. Optical spectra of the central cluster galaxies

C. S. Crawford; S. W. Allen; H. Ebeling; A. C. Edge; Andrew C. Fabian

We present new spectra of dominant galaxies in X-ray selected clusters of galaxies, which combine with our previously published spectra to form a sample of 256 dominant galaxies in 215 clusters. 177 of the clusters are members of the ROSAT Brightest Cluster Sample (BCS; Ebeling et al. 1998), and 18 have no previous measured redshift. This is the first paper in a series correlating the properties of brightest cluster galaxies and their host clusters in the radio, optical and X-ray wavebands. 27 per cent of the central dominant galaxies have emission-line spectra, all but five with line intensity ratios typical of cooling flow nebulae. A further 6 per cent show only (NII)��6548,6584 with Hin absorption. We find no evidence for an increase in the frequency of line emission with X-ray luminosity. Purely X-ray-selected clusters at low redshift have a higher probability of containing line emission. The projected separation between the optical position of the dominant galaxy and its host cluster X- ray centroid is less for the line-emitting galaxies than for those without line emission, consistent with a closer association of the central galaxy and the gravitational centre in cooling flow clusters. The more H�-luminous galaxies have larger emission-line regions and show a higher ratio of Balmer to forbidden line emission, although there is a continuous trend of ionization behaviour across four decades in Hluminosity. Galaxies with the more luminous line emission (L(H�)> 10 41 ergs 1 ) show a significantly bluer continuum, whereas lower-luminosity and (NII)-only line emitters have continua that differ little from those of non-line emitting dominant galaxies. Values of the Balmer decrement in the more luminous systems commonly imply intrinsic reddening of E(B-V)� 0.3, and when this is corrected for, the excess blue light can be characterized by a population of massive young stars. Several of the galaxies require a large population of O stars, which also provide sufficient photoionization to produce theobserved Hluminosity. The large number of lower-mass stars relative to the O star population suggests that this anomalous population is due to a series of starbursts in the central galaxy. The lower H�-luminosity systems show a higher ionization state and few massive stars, requiring instead the introduction of a harder source of photoionization, such as turbulent mixing layers, or low-level nuclear activity. The line emission from the systems showing only (NII) is very similar to low-level LINER activity commonly found in many normal elliptical galaxies.


Monthly Notices of the Royal Astronomical Society | 2001

The detection of molecular gas in the central galaxies of cooling flow clusters

A. C. Edge

We present the detections of CO line emission in the central galaxy of 16 extreme cooling flow clusters using the IRAM 30-m and the JCMT 15-m telescopes. These detections of , , and are consistent with the presence of a substantial mass of warm molecular gas within 50-kpc radius of the central galaxy. We present limits on 13 other galaxies in similarly extreme cooling flow clusters. These results are consistent with the presence of a massive starburst in the central galaxy, which warms a population of cold gas clouds producing both optical and near-infrared emission lines and significant CO line emission. Curiously, our CO detections are restricted to the lower radio power central galaxies. These are the first detections of molecular gas in a cooling flow other than NGC 1275 in the Perseus cluster. As four of our targets have firm limits on their dust mass from SCUBA and the rest have crude limits from IRAS, we can calculate gas-to-dust ratios. Simple analysis indicates that the best secondary indicator of molecular gas is optical line luminosity. We review the implications of these results and the prospects for observations in the near future.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey - II:supernova survey: technical summary

Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.


Nature | 2010

Intense star formation within resolved compact regions in a galaxy at z = 2.3

A. M. Swinbank; Ian Smail; S. N. Longmore; A. I. Harris; A. J. Baker; C. De Breuck; Johan Richard; A. C. Edge; R. J. Ivison; R. Blundell; K. E. K. Coppin; P. Cox; M. A. Gurwell; Laura J. Hainline; M. Krips; A. Lundgren; R. Neri; Brian D. Siana; G. Siringo; Daniel P. Stark; David J. Wilner; J.D. Younger

Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimetre wavelengths and which may be forming stars at a rate of 1,000 solar masses (M⊙) per year. These intense bursts of star formation are believed to be driven by mergers between gas-rich galaxies. Probing the properties of individual star-forming regions within these galaxies, however, is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here we report observations of the sub-millimetre galaxy SMMJ2135-0102 at redshift z = 2.3259, which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This magnification, when combined with high-resolution sub-millimetre imaging, resolves the star-forming regions at a linear scale of only 100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are about a hundred times larger and 107 times more luminous. Although vigorously star-forming, the underlying physics of the star-formation processes at z ≈ 2 appears to be similar to that seen in local galaxies, although the energetics are unlike anything found in the present-day Universe.


The Astrophysical Journal | 2008

An Infrared Survey of Brightest Cluster Galaxies. II. Why are Some Brightest Cluster Galaxies Forming Stars

Christopher P. O'Dea; Stefi A. Baum; G. C. Privon; Jacob Noel-Storr; Alice C. Quillen; Nicholas Zufelt; Jaehong Park; A. C. Edge; H. R. Russell; Andrew C. Fabian; Megan Donahue; Craig L. Sarazin; Brian R. McNamara; Joel N. Bregman; E. Egami

Quillen et al. presented an imaging survey with the Spitzer Space Telescope of 62 brightest cluster galaxies with optical line emission located in the cores of X-ray-luminous clusters. They found that at least half of these sources have signs of excess IR emission. Here we discuss the nature of the IR emission and its implications for cool core clusters. The strength of the mid-IR excess emission correlates with the luminosity of the optical emission lines. Excluding the four systems dominated by an AGN, the excess mid-IR emission in the remaining brightest cluster galaxies is likely related to star formation. The mass of molecular gas (estimated from CO observations) is correlated with the IR luminosity as found for normal star-forming galaxies. The gas depletion timescale is about 1 Gyr. The physical extent of the IR excess is consistent with that of the optical emission-line nebulae. This supports the hypothesis that star formation occurs in molecular gas associated with the emission-line nebulae and with evidence that the emission-line nebulae are mainly powered by ongoing star formation. We find a correlation between mass deposition rates () estimated from the X-ray emission and the star formation rates estimated from the IR luminosity. The star formation rates are 1/10 to 1/100 of the mass deposition rates, suggesting that the reheating of the intracluster medium is generally very effective in reducing the amount of mass cooling from the hot phase but not eliminating it completely.

Collaboration


Dive into the A. C. Edge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Fabian

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. J. Ivison

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Megan Donahue

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge