Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Smail is active.

Publication


Featured researches published by Ian Smail.


Monthly Notices of the Royal Astronomical Society | 2007

The UKIRT infrared deep sky survey (UKIDSS)

A. Lawrence; S. J. Warren; Omar Almaini; A. C. Edge; Nigel Hambly; R. F. Jameson; Philip W. Lucas; M. Casali; A. J. Adamson; Simon Dye; James P. Emerson; S. Foucaud; Paul C. Hewett; Paul Hirst; Simon T. Hodgkin; M. J. Irwin; N. Lodieu; Richard G. McMahon; Chris Simpson; Ian Smail; D. Mortlock; M. Folger

Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007


The Astrophysical Journal | 2005

A Redshift Survey of the Submillimeter Galaxy Population

S. C. Chapman; A. W. Blain; Ian Smail; R. J. Ivison

We have obtained spectroscopic redshifts using the Keck I telescope for a sample of 73 submillimeter galaxies (SMGs), with a median 850 μm flux density of 5.7 mJy, for which precise positions are available through their faint radio emission. The galaxies lie at redshifts out to z = 3.6, with a median redshift of 2.2 and an interquartile range z = 1.7-2.8. Modeling a purely submillimeter flux-limited sample, based on the expected selection function for our radio-identified sample, suggests a median redshift of 2.3, with a redshift distribution remarkably similar to the optically and radio-selected quasars. The observed redshift distributions are similar for the active galactic nucleus (AGN) and starburst subsamples. The median RAB is 24.6 for the sample. However, the dust-corrected ultraviolet (UV) luminosities of the galaxies rarely hint at the huge bolometric luminosities indicated by their radio/submillimeter emission, with the effect that the true luminosity can be underestimated by a median factor of ~120 for SMGs with pure starburst spectra. Radio and submillimeter observations are thus essential to select the most luminous high-redshift galaxies. The 850 μm, radio, and redshift data are used to estimate the dust temperatures and characterize photometric redshifts. Using 450 μm measurements for a subset of our sample, we confirm that a median dust temperature of Td = 36 ± 7 K, derived on the assumption that the local far-infrared (FIR)-radio correlation applies at high redshift, is reasonable. Individual 450 μm detections are consistent with the local radio-FIR relation holding at z ~ 2. This median Td is lower than that estimated for similarly luminous IRAS 60 μm galaxies locally. We demonstrate that dust temperature variations make it impossible to estimate redshifts for individual SGMs to better than Δz 1 using simple long-wavelength photometric methods. We calculate total infrared and bolometric luminosities (the median infrared luminosity estimated from the radio is 8.5 × 1012 L☉), construct a luminosity function, and quantify the strong evolution of the submillimeter population across z = 0.5-3.5 relative to local IRAS galaxies. We use the bolometric luminosities and UV-spectral classifications to determine a lower limit to the AGN content of the population and measure directly the varying the contribution of highly obscured, luminous galaxies to the luminosity density history of the universe for the first time. We conclude that bright submillimeter galaxies contribute a comparable star formation density to Lyman break galaxies at z = 2-3, and including galaxies below our submillimeter flux limit, this population may be the dominant site of massive star formation at this epoch. The rapid evolution of SMGs and QSO populations contrasts with that seen in bolometrically lower luminosity galaxy samples selected in the rest-frame UV and suggests a close link between SMGs and the formation and evolution of the galactic halos that host QSOs.


The Astrophysical Journal | 1997

A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution

Ian Smail; R. J. Ivison; A. W. Blain

We present the first results of a submillimeter survey of distant clusters using the new Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. We have mapped fields in two massive, concentrated clusters, A370 at z=0.37 and Cl 2244-02 at z=0.33, at wavelengths of 450 and 850 μm. The resulting continuum maps cover a total area of about 10 arcmin2 to 1 σ noise levels less than 14 and 2 mJy beam-1 at the two wavelengths, 2-3 orders of magnitude deeper than was previously possible. We have concentrated on lensing clusters to exploit the amplification of all background sources by the cluster, improving the sensitivity by a factor of 1.3-2 as compared with a blank-field survey. A cumulative source surface density of (2.4±1.0)×103 deg-2 is found to a 50% completeness limit of ~4 mJy at 850 μm. The submillimeter spectral properties of these sources indicate that the majority lie at high redshift, z>1. Without correcting for lens amplification, our observations limit the blank-field counts at this depth. The surface density is 3 orders of magnitude greater than the expectation of a nonevolving model using the local IRAS 60 μm luminosity function. The observed source counts thus require a substantial increase in the number density of strongly star-forming galaxies in the high-redshift universe and suggest that optical surveys may have substantially underestimated the star formation density in the distant universe. Deeper submillimeter surveys with SCUBA should detect large numbers of star-forming galaxies at high redshift and so provide strong constraints on the formation of normal galaxies.


The Astrophysical Journal | 1999

The Star formation histories of galaxies in distant clusters

Bianca M. Poggianti; Ian Smail; Alan Dressler; Warrick J. Couch; Amy J. Barger; Harvey Butcher; Richard S. Ellis; Augustus Oemler

We present a detailed analysis of the spectroscopic catalog of galaxies in 10 distant clusters from Dressler et al. We investigate the nature of the different spectral classes defined by Dressler et al., including star-forming, poststarburst, and passive galaxy populations, and reproduce their basic properties using our spectral synthesis model. We attempt to identify the evolutionary pathways between the various spectral classes in order to search for the progenitors of the numerous poststarburst galaxies. The comparison of the spectra of the distant galaxy populations with samples drawn from the local universe leads us to identify a significant population of dust-enshrouded starburst galaxies, showing both strong Balmer absorption and relatively modest [O II] emission, that we believe are the most likely progenitors of the poststarburst population. We present the differences between the field and cluster galaxies at z=0.4-0.5. We then compare the spectral and morphological properties of the distant cluster galaxies, exploring the connection between the quenching of star formation inferred from the spectra and the strong evolution of the S0 population discussed by Dressler et al. We conclude that either two different timescales and/or two different physical processes are responsible for the spectral and morphological transformation.


Astrophysical Journal Supplement Series | 2007

zCOSMOS: A large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field

S. Lilly; O. Le Fèvre; A. Renzini; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; G. Hasinger; J.-P. Kneib; A. Iovino; V. Le Brun; C. Maier; V. Mainieri; M. Mignoli; J. D. Silverman; L. Tasca; M. Bolzonella; A. Bongiorno; D. Bottini; P. Capak; Karina Caputi; A. Cimatti; O. Cucciati; Emanuele Daddi; R. Feldmann; P. Franzetti; B. Garilli; L. Guzzo; O. Ilbert; P. Kampczyk

zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright, a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole 1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8 redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines.


Monthly Notices of the Royal Astronomical Society | 2005

An interferometric CO survey of luminous submillimetre galaxies

T. R. Greve; F. Bertoldi; Ian Smail; R. Neri; S. C. Chapman; A. W. Blain; R. J. Ivison; R. Genzel; A. Omont; P. Cox; L. J. Tacconi; Jean-Paul Kneib

In this paper, we present results from an Institut de Radio Astronomie Millimetrique (IRAM) Plateau de Bure millimetre-wave Interferometer (PdBI) survey for carbon monoxide (CO) emission towards radio-detected submillimetre galaxies (SMGs) with known optical and near-infrared spectroscopic redshifts. Five sources in the redshift range z ∼ 1-3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarize the properties of all 12 CO-detected SMGs, as well as six sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the submillimetre galaxy (SMG) population as a whole. The median CO line luminosity of the SMGs is = (3.8 ± 2.0) × 10 10 K km s -1 pc 2 . Using a CO-to-H 2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass = (3.0 ± 1.6) x 10 10 M ○. within an ∼ 2 kpc radius, approximately 4 times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high-redshift radio galaxies (HzRGs) and quasi-sellar objects (QSOs). The median CO FWHM linewidth is broad, (FWHM) = 780 ± 320 km s -1 , and the SMGs often have double-peaked line profiles, indicative of either a merger or a disc. From their median gas reservoirs (∼ 3 x 10 10 M ○. ) and star formation rates (≥ 700 M ○. yr -1 ), we estimate a lower limit on the typical gas-depletion time-scale of ≥ 40 Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs and suggests that negative feedback processes may play an important role in prolonging the gas consumption time-scale. We find a statistically significant correlation between the far-infrared and CO luminosities of the SMGs, which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. The non-linear nature of the correlation implies that SMGs have higher far-infrared to CO luminosity ratios and possibly higher star formation efficiencies (SFEs), than local ULIRGs. Assuming a typical CO source diameter of θ ∼ 0.5 arcsec (D ∼ 4kpc), we estimate a median dynamical mass of ≃ (1.2 ± 1.5) x 10 11 M ○. for the SMG sample. Both the total gas and stellar masses imply that SMGs are very massive systems, dominated by baryons in their central regions. The baryonic and dynamical properties of these systems mirror those of local giant ellipticals and are consistent with numerical simulations of the formation of the most massive galaxies. We have been able to impose a lower limit of ≥ 5 x 10 -6 Mpc -3 to the comoving number density of massive galaxies in the redshift range z ∼ 2-3.5, which is in agreement with results from recent spectroscopic surveys and the most recent model predictions.


The Astrophysical Journal | 1997

The Homogeneity of Spheroidal Populations in Distant Clusters

Richard S. Ellis; Ian Smail; Alan Dressler; Warrick J. Couch; Augustus Oemler; Harvey Butcher; Ray M. Sharples

The small scatter observed for the (U-V) colors of spheroidal galaxies in nearby clusters of galaxies provides a powerful constraint on the history of star formation in dense environments. However, with local data alone, it is not possible to separate models where galaxies assembled synchronously over redshifts 0 < z < 1 from ones where galaxies formed stochastically at much earlier times. Here we attempt to resolve this ambiguity via high-precision rest-frame UV-optical photometry of a large sample of morphologically selected spheroidal galaxies in three z ~ 0.54 clusters that have been observed with the Hubble Space Telescope (HST). We demonstrate the robustness of using the HST to conduct the morphological separation of spheroidal and disk galaxies at this redshift and use our new data to repeat the analysis conducted locally at a significant look-back time. We find a small scatter (<0.1 mag rms) for galaxies classed as Es and E/S0s, both internally within each of the three clusters and externally from cluster to cluster. We do not find any trend for the scatter to increase with decreasing luminosity down to L~L*V+3, other than can be accounted for by observational error. Neither is there evidence for a distinction between the scatter observed for galaxies classified as ellipticals and S0. Our result provides a new constraint on the star formation history of cluster spheroidals prior to z 0.5 confirming and considerably strengthening the earlier conclusions. Most of the star formation in the elliptical galaxies in dense clusters was completed before z 3 in conventional cosmologies. Although we cannot rule out the continued production of some ellipticals, our results do indicate an era of initial star formation consistent with the population of star-forming galaxies recently detected beyond z 3.


Astrophysical Journal Supplement Series | 1999

A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies

Alan Dressler; Ian Smail; Bianca M. Poggianti; Harvey Butcher; Warrick J. Couch; Richard S. Ellis; Augustus Oemler

We present spectroscopic observations of galaxies in the fields of 10 distant clusters for which we have previously presented deep imaging with WFPC2 on board the Hubble Space Telescope. The clusters span the redshift range z=0.37-0.56 and are the subject of a detailed ground- and space-based study to investigate the evolution of galaxies as a function of environment and epoch. The data presented here include positions, photometry, redshifts, spectral line strengths, and classifications for 657 galaxies in the fields of the 10 clusters. The catalog is composed of 424 cluster members across the 10 clusters and 233 field galaxies, with detailed morphological information from our WFPC2 images for 204 of the cluster galaxies and 71 in the field. We illustrate some basic properties of the catalog, including correlations between the morphological and spectral properties of our large sample of cluster galaxies. A direct comparison of the spectral properties of the high-redshift cluster and field populations suggests that the phenomenon of strong Balmer lines in otherwise passive galaxies (commonly called E + A but renamed here as the k + a class) shows an order-of-magnitude increase in the rich cluster environment compared with a more modest increase in the field population. This suggests that the process or processes involved in producing k + a galaxies are either substantially more effective in the cluster environment or that this environment prolongs the visibility of this phase. A more detailed analysis and modeling of these data is presented in Poggianti et al.


The Astrophysical Journal | 2005

The X-Ray Spectral Properties of SCUBA Galaxies

D. M. Alexander; F. E. Bauer; S. C. Chapman; Ian Smail; A. W. Blain; W. N. Brandt; R. J. Ivison

Deep SCUBA surveys have uncovered a large population of massive submillimeter-emitting galaxies (SMGs; f850μm 4 mJy) at z 1. Although it is generally believed that these galaxies host intense star formation activity, there is growing evidence that a substantial fraction also harbor an active galactic nucleus (AGN; i.e., an accreting super-massive black hole [SMBH]). We present here possibly the strongest evidence for this viewpoint to date: the combination of ultradeep X-ray observations (the 2 Ms Chandra Deep Field-North) and deep Keck spectroscopic data of SMGs with radio counterparts. We find that the majority (≈75%) of these radio-selected spectroscopically identified SMGs host AGN activity; the other ≈25% have X-ray properties consistent with star formation (X-ray-derived star formation rates of ≈1300-2700 M☉ yr-1). The AGNs have properties generally consistent with those of nearby luminous AGNs (Γ ≈ 1.8 ± 0.5, NH ≈ 1020-1024 cm-2, and LX ≈ 1043-1044.5 ergs s-1), and the majority (≈80%) are heavily obscured (NH 1023 cm-2). We construct composite rest-frame 2-20 keV spectra for three different obscuration classes [NH 5 × 1023 cm-2], which reveal features not seen in the individual X-ray spectra. An ≈1 keV equivalent width Fe Kα emission line is seen in the composite X-ray spectrum of the most heavily obscured AGNs, suggesting Compton-thick or near Compton-thick absorption. Even taking into account the effects of absorption, we find that the average X-ray to far-IR luminosity ratio of the AGN-classified SMGs (LX/LFIR = 0.004) is approximately 1 order of magnitude below that found for typical quasars. This result suggests that intense star formation activity (of order ≈1000 M☉ yr-1) dominates the bolometric output of these SMGs. However, we also explore the possibility that the X-ray to far-IR luminosity ratio of the AGN components is intrinsically less than that found for typical quasars and postulate that some SMGs may be AGN dominated. We investigate the implications of our results for the growth of massive black holes, discuss the prospects for deeper X-ray observations, and explore the scientific potential offered by the next generation of X-ray observatories.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

Collaboration


Dive into the Ian Smail's collaboration.

Top Co-Authors

Avatar

R. J. Ivison

Aiken Technical College

View shared research outputs
Top Co-Authors

Avatar

A. W. Blain

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Dunlop

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. E. K. Coppin

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Best

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge