Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.C. Sørensen is active.

Publication


Featured researches published by A.C. Sørensen.


Journal of Dairy Science | 2011

Hygiene-related and feed-related hoof diseases show different patterns of genetic correlations to clinical mastitis and female fertility

L.H. Buch; A.C. Sørensen; J. Lassen; Peer Berg; J.-Å. Eriksson; J.H. Jakobsen; M.K. Sørensen

Hoof diseases are a problem in many dairy herds. To study one aspect of the problem, genetic correlations between 4 hoof diseases, protein yield, clinical mastitis, number of inseminations, and days from calving to first insemination were estimated in first-parity Swedish Red cows using trivariate linear animal models. Occurrence of dermatitis, heel horn erosion, sole hemorrhage, and sole ulcer were reported by hoof trimmers. The data set contained about 314,000 animals with records on at least one of the traits; among these, about 64,000 animals had records on hoof diseases. Heritabilities were low for all hoof diseases (0.03 to 0.05). The hoof diseases fell into 2 groups: (1) dermatitis and heel horn erosion (i.e., diseases related to hygiene) and (2) sole hemorrhage and sole ulcer (i.e., diseases related to feeding). The genetic correlations between traits within the 2 groups were high (0.87 and 0.73, respectively), whereas the genetic correlations between traits in different groups were low (≤0.23). These results indicate that the 2 groups of hoof diseases are partly influenced by the same genes. All genetic correlations between hoof diseases and protein yield were low to moderate and unfavorable. Moderate and favorable genetic correlations were found between the feed-related hoof diseases and clinical mastitis (0.35 and 0.32), whereas the genetic correlations between the hygiene-related hoof diseases and clinical mastitis were low and not significantly different from zero. The genetic correlations between the hygiene-related hoof diseases and number of inseminations were low to moderate and favorable (0.32 and 0.22), and the genetic correlations between the feed-related hoof diseases and number of inseminations were low and not significantly different from zero. A moderate genetic correlation was found between sole ulcer and days from calving to first insemination (0.33), whereas the genetic correlations between days from calving to first insemination and sole hemorrhage and the hygiene-related hoof diseases were low and not significantly different from zero. In general, the 2 groups of hoof diseases showed different patterns of genetic correlations to the other functional traits, but both were unfavorably correlated to protein yield. A simulation study showed that inclusion of hoof diseases in the selection index will not only reduce the genetic decline in resistance to hoof diseases but also be favorable for other functional traits and improve overall genetic merit.


Journal of Animal Breeding and Genetics | 2012

Genomic selection strategies in dairy cattle: Strong positive interaction between use of genotypic information and intensive use of young bulls on genetic gain

L.H. Buch; M.K. Sørensen; Peer Berg; Louise Dybdahl Pedersen; A.C. Sørensen

We tested the following hypotheses: (i) breeding schemes with genomic selection are superior to breeding schemes without genomic selection regarding annual genetic gain of the aggregate genotype (ΔG(AG) ), annual genetic gain of the functional traits and rate of inbreeding per generation (ΔF), (ii) a positive interaction exists between the use of genotypic information and a short generation interval on ΔG(AG) and (iii) the inclusion of an indicator trait in the selection index will only result in a negligible increase in ΔG(AG) if genotypic information about the breeding goal trait is known. We examined four breeding schemes with or without genomic selection and with or without intensive use of young bulls using pseudo-genomic stochastic simulations. The breeding goal consisted of a milk production trait and a functional trait. The two breeding schemes with genomic selection resulted in higher ΔG(AG) , greater contributions of the functional trait to ΔG(AG) and lower ΔF than the two breeding schemes without genomic selection. Thus, the use of genotypic information may lead to more sustainable breeding schemes. In addition, a short generation interval increases the effect of using genotypic information on ΔG(AG) . Hence, a breeding scheme with genomic selection and with intensive use of young bulls (a turbo scheme) seems to offer the greatest potential. The third hypothesis was disproved as inclusion of genomically enhanced breeding values (GEBV) for an indicator trait in the selection index increased ΔG(AG) in the turbo scheme. Moreover, it increased the contribution of the functional trait to ΔG(AG) , and it decreased ΔF. Thus, indicator traits may still be profitable to use even when GEBV for the breeding goal traits are available.


Animal | 2012

The value of cows in reference populations for genomic selection of new functional traits

L.H. Buch; Morten Kargo; Peer Berg; J. Lassen; A.C. Sørensen

Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.


Journal of Dairy Science | 2009

Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding

L.D. Pedersen; A.C. Sørensen; Peer Berg

This study investigated whether selection using genotype information reduced the rate and level of true inbreeding, that is, identity by descent, at a selectively neutral locus as well as a locus under selection compared with traditional BLUP selection. In addition, the founder representation at these loci and the within-family selection at the nonneutral locus were studied. The study was carried out using stochastic simulation of a population resembling the breeding nucleus of a dairy cattle population for 25 yr. Each year, 10 proven bulls were selected across herds along with 100 dams from within each of 40 herds. Selection was performed using BLUP, marker-assisted, or gene-assisted selection for a trait with low heritability (h2 = 0.04) only expressed in females, mimicking a health trait. The simulated genome consisted of 2 chromosomes. One biallelic quantitative trait loci (QTL) with an initial frequency of the favorable allele of 0.1, and initially explaining 25% of the genetic variance as well as 4 markers were simulated in linkage disequilibrium, all positioned at chromosome 1. Chromosome 2 was selectively neutral, and consisted of a single neutral locus. The results showed that in addition to reducing pedigree-estimated inbreeding, the incorporation of genotype information in the selection criteria also reduced the level and rate of true inbreeding. In general, true inbreeding in the QTL was greater than pedigree-estimated inbreeding with respect to both the level and rate of inbreeding, as expected. Also as expected, true and pedigree-estimated inbreeding in the neutral locus were the same. Furthermore, after 25 yr, or approximately 5 generations, the pedigree-estimated level of inbreeding was reduced by 11 and 24% compared with BLUP in gene- and marker-assisted selection, respectively, and the level of true inbreeding in the QTL was reduced by 22 and 13%, respectively. The difference between selection scenarios was found to be caused by a larger number of founders being represented at the QTL when using genotype information in the selection criteria. This in turn was caused by an increased selection of individuals sharing the favorable QTL allele rather than individuals sharing genes on average, which was shown by a higher Mendelian selection differential in the QTL. Hence, even though the selection pressure was increased at the QTL, more variation was retained. The results suggest that marker-assisted selection is a useful selection strategy.


Journal of Dairy Science | 2014

Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit

Jørn Rind Thomasen; C. Egger-Danner; Alfons Willam; Bernt Guldbrandtsen; Mogens Sandø Lund; A.C. Sørensen

The objective of this study was to evaluate a genomic breeding scheme in a small dairy cattle population that was intermediate in terms of using both young bulls (YB) and progeny-tested bulls (PB). This scheme was compared with a conventional progeny testing program without use of genomic information and, as the extreme case, a juvenile scheme with genomic information, where all bulls were used before progeny information was available. The population structure, cost, and breeding plan parameters were chosen to reflect the Danish Jersey cattle population, being representative for a small dairy cattle population. The population consisted of 68,000 registered cows. Annually, 1,500 bull dams were screened to produce the 500 genotyped bull calves from which 60 YB were selected to be progeny tested. Two unfavorably correlated traits were included in the breeding goal, a production trait (h(2)=0.30) and a functional trait (h(2)=0.04). An increase in reliability of 5 percentage points for each trait was used in the default genomic scenario. A deterministic approach was used to model the different breeding programs, where the primary evaluation criterion was annual monetary genetic gain (AMGG). Discounted profit was used as an indicator of the economic outcome. We investigated the effect of varying the following parameters: (1) increase in reliability due to genomic information, (2) number of genotyped bull calves, (3) proportion of bull dam sires that are young bulls, and (4) proportion of cow sires that are young bulls. The genomic breeding scheme was both genetically and economically superior to the conventional breeding scheme, even in a small dairy cattle population where genomic information causes a relatively low increase in reliability of breeding values. Assuming low reliabilities of genomic predictions, the optimal breeding scheme according to AMGG was characterized by mixed use of YB and PB as bull sires. Exclusive use of YB for production cows increased AMGG up to 3 percentage points. The results from this study supported our hypothesis that strong interaction effects exist. The strongest interaction effects were obtained between increased reliabilities of genomic estimated breeding values and more intensive use of YB. The juvenile scheme was genetically inferior when the increase in reliability was low (5 percentage points), but became genetically superior at higher reliabilities of genomic estimated breeding values. The juvenile scheme was always superior according to discounted profit because of the shorter generation interval and minimizing costs for housing and feeding waiting bulls.


Journal of Dairy Science | 2010

Monitoring inbreeding trends and inbreeding depression for economically important traits of Holstein cattle in Iran

M. Rokouei; R. Vaez Torshizi; M. Moradi Shahrbabak; Mehdi Sargolzaei; A.C. Sørensen

Pedigree information of 852,443 registered Holstein cows and bulls, collected by the Animal Breeding Center of Iran from 1971 to 2007, was used to calculate inbreeding coefficients and their effect on production, reproduction, somatic cell count, calving ease, and longevity traits. The average inbreeding coefficient for the entire population was 2.90%, ranging from zero to 47.03%. The rates of inbreeding from 1989 to 2007 were 0.22 and 0.15% per year for females and males, respectively. The rates were higher after 2000, being 0.31 and 0.21% per year for females and males, respectively. Inbreeding had a deleterious effect on most traits. For the first 3 lactations, the inbreeding depression per 1% increase in inbreeding was -18.72, -16.19, and -27.38 kg for milk yield, -0.443, -0.367, and -0.690 kg for fat yield, and -0.476, -0.425, and -0.66 kg for protein yield, respectively. For all reproductive traits, the observed undesirable effect of inbreeding was not significant, except for the calving interval (0.53 d per 1% increase in inbreeding) in the third parity and age at first calving (0.45 d per 1% increase in inbreeding). Calving ease in heifers and cows was significantly influenced by the inbreeding of the dam, indicating that highly inbred cows had a higher incidence of difficult calvings. The estimate of inbreeding depression for somatic cell score was low and significant only for the third lactation. However, animals with high inbreeding coefficient tended to have higher somatic cell scores than animals with low inbreeding coefficients. For type traits, the influence of inbreeding was significant only for stature, chest width, body depth, size, rear udder height, suspensory ligament, udder depth, and front and rear teat placement. Cows with high levels of inbreeding coefficient were at higher relative risk of being culled.


Journal of Dairy Science | 2014

Adding cows to the reference population makes a small dairy population competitive

Jørn Rind Thomasen; A.C. Sørensen; Mogens Sandø Lund; Bernt Guldbrandtsen

Small dairy breeds are challenged by low reliabilities of genomic prediction. Therefore, we evaluated the effect of including cows in the reference population for small dairy cattle populations with a limited number of sires in the reference population. Using detailed simulations, 2 types of scenarios for maintaining and updating the reference population over a period of 15yr were investigated: a turbo scheme exclusively using genotyped young bulls and a hybrid scheme with mixed use of genotyped young bulls and progeny-tested bulls. Two types of modifications were investigated: (1) number of progeny-tested bulls per year was tested at 6 levels: 15, 40, 60, 100, 250, and 500; and (2) each year, 2,000 first-lactation cows were randomly selected from the cow population for genotyping or, alternatively, an additional 2,000 first-lactation cows were randomly selected and typed in the first 2yr. The effects were evaluated in the 2 main breeding schemes. The breeding schemes were chosen to mimic options for the Danish Jersey cattle population. Evaluation criteria were annual monetary genetic gain, rate of inbreeding, reliability of genomic predictions, and variance of response. Inclusion of cows in the reference population increased monetary genetic gain and decreased the rate of inbreeding. The increase in genetic gain was larger for the turbo schemes with shorter generation intervals. The variance of response was generally higher in turbo schemes than in schemes using progeny-tested bulls. However, the risk was reduced by adding cows to the reference population. The annual genetic gain and the reliability of genomic predictions were slightly higher with more cows in the reference population. Inclusion of cows in the reference population is a rapid way to increase reliabilities of genomic predictions and hence increase genetic gain in a small population. An economic evaluation shows that genotyping of cows is a profitable investment.


Genetics Selection Evolution | 2014

Allele frequency changes due to hitch-hiking in genomic selection programs

Huiming Liu; A.C. Sørensen; Theo H. E. Meuwissen; Peer Berg

BackgroundGenomic selection makes it possible to reduce pedigree-based inbreeding over best linear unbiased prediction (BLUP) by increasing emphasis on own rather than family information. However, pedigree inbreeding might not accurately reflect loss of genetic variation and the true level of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and level of inbreeding.MethodsSelection was performed in simulated scenarios with a population of 400 animals for 25 consecutive generations. Six genetic models were considered with different heritabilities and numbers of QTL (quantitative trait loci) affecting the trait. Four selection criteria were used, including selection on own phenotype and on estimated breeding values (EBV) derived using phenotype-BLUP, genomic BLUP and Bayesian Lasso. Changes in allele frequencies at QTL, markers and linked neutral loci were investigated for the different selection criteria and different scenarios, along with the loss of favourable alleles and the rate of inbreeding measured by pedigree and runs of homozygosity.ResultsFor each selection criterion, hitch-hiking in the vicinity of the QTL appeared more extensive when accuracy of selection was higher and the number of QTL was lower. When inbreeding was measured by pedigree information, selection on genomic BLUP EBV resulted in lower levels of inbreeding than selection on phenotype BLUP EBV, but this did not always apply when inbreeding was measured by runs of homozygosity. Compared to genomic BLUP, selection on EBV from Bayesian Lasso led to less genetic drift, reduced loss of favourable alleles and more effectively controlled the rate of both pedigree and genomic inbreeding in all simulated scenarios. In addition, selection on EBV from Bayesian Lasso showed a higher selection differential for mendelian sampling terms than selection on genomic BLUP EBV.ConclusionsNeutral variation can be shaped to a great extent by the hitch-hiking effects associated with selection, rather than just by genetic drift. When implementing long-term genomic selection, strategies for genomic control of inbreeding are essential, due to a considerable hitch-hiking effect, regardless of the method that is used for prediction of EBV.


Journal of Animal Breeding and Genetics | 2009

Marker-assisted selection reduces expected inbreeding but can result in large effects of hitchhiking.

L.D. Pedersen; A.C. Sørensen; Peer Berg

We used computer simulations to investigate to what extent true inbreeding, i.e. identity-by-descent, is affected by the use of marker-assisted selection (MAS) relative to traditional best linear unbiased predictions (BLUP) selection. The effect was studied by varying the heritability (h(2) = 0.04 vs. 0.25), the marker distance (MAS vs. selection on the gene, GAS), the favourable QTL allele effect (alpha = 0.118 vs. 0.236) and the initial frequency of the favourable QTL allele (p = 0.01 vs. 0.1) in a population resembling the breeding nucleus of a dairy cattle population. The simulated genome consisted of two chromosomes of 100 cM each in addition to a polygenic component. On chromosome 1, a biallelic QTL as well as 4 markers were simulated in linkage disequilibrium. Chromosome 2 was selectively neutral. The results showed that, while reducing pedigree estimated inbreeding, MAS and GAS did not always reduce true inbreeding at the QTL relative to BLUP. MAS and GAS differs from BLUP by increasing the weight on Mendelian sampling terms and thereby lowering inbreeding, while increasing the fixation rate of the favourable QTL allele and thereby increasing inbreeding. The total outcome in terms of inbreeding at the QTL depends on the balance between these two effects. In addition, as a result of hitchhiking, MAS results in extra inbreeding in the region surrounding QTL, which could affect the overall genomic inbreeding.


Journal of Animal Breeding and Genetics | 2012

Genomic selection strategies in dairy cattle breeding programmes: Sexed semen cannot replace multiple ovulation and embryo transfer as superior reproductive technology.

Louise Dybdahl Pedersen; Morten Kargo; Peer Berg; J. Voergaard; L.H. Buch; A.C. Sørensen

The aim of this study was to test whether the use of X-semen in a dairy cattle population using genomic selection (GS) and multiple ovulation and embryo transfer (MOET) increases the selection intensity on cow dams and thereby the genetic gain in the entire population. Also, the dynamics of using different types of sexed semen (X, Y or conventional) in the nucleus were investigated. The stochastic simulation study partly supported the hypothesis as the genetic gain in the entire population was elevated when X-semen was used in the production population as GS exploited the higher selection intensity among heifers with great accuracy. However, when MOET was applied, the effect was considerably diminished as was the exchange of females between the nucleus and the production population, thus causing modest genetic profit from using X-sorted semen in the production population. In addition, the effect of using sexed semen on the genetic gain was very small compared with the effect of MOET and highly dependent on whether cow dams or bull dams were inseminated with sexed semen and on what type of semen that was used for the bull dams. The rate of inbreeding was seldom affected by the use of sexed semen. However, when all young bull candidates were born following MOET, the results showed that the use of Y-semen in the breeding nucleus tended to decrease the rate of inbreeding as it enabled GS to increase within-family selection. This implies that the benefit from using sexed semen in a modern dairy cattle breeding scheme applying both GS and MOET may be found in its beneficial effect on the rate of inbreeding.

Collaboration


Dive into the A.C. Sørensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Henryon

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge