A. Diez
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Diez.
Japanese Journal of Applied Physics | 2000
Armin Dadgar; J. Bläsing; A. Diez; A. Alam; M. Heuken; A. Krost
We present a simple method for the elimination of cracks in GaN layers grown on Si (111). Cracking of GaN on Si usually occurs due to large lattice and thermal mismatch of GaN and Si when layer thicknesses exceeds approximately 1 µm. By introducing thin, low-temperature AlN interlayers, we could significantly reduce the crack density of the GaN layer. The crack density is practically reduced to zero from an original crack density of 240 mm-2 corresponding to crack-free regions of 3×10-3 mm2. Additionally for the GaN layer with low temperature interlayers, the full width at half maximum X-ray (2024) rocking curve is improved from approximately 270 to 65 arcsec.
Applied Physics Letters | 2002
Armin Dadgar; M. Poschenrieder; J. Bläsing; K. Fehse; A. Diez; A. Krost
Thick, entirely crack-free GaN-based light-emitting diode structures on 2 in. Si(111) substrates were grown by metalorganic chemical-vapor deposition. The ∼2.8-μm-thick diode structure was grown using a low-temperature AlN:Si seed layer and two low-temperature AlN:Si interlayers for stress reduction. In current–voltage measurements, low turn-on voltages and a series resistance of 55 Ω were observed for a vertically contacted diode. By in situ insertion of a SixNy mask, the luminescence intensity is significantly enhanced. A light output power of 152 μW at a current of 20 mA and a wavelength of 455 nm is achieved.
Journal of Crystal Growth | 2003
Armin Dadgar; M. Poschenrieder; J. Bläsing; O. Contreras; F. Bertram; T. Riemann; A. Reiher; Mike Kunze; I. Daumiller; A. Krtschil; A. Diez; A. Kaluza; A. Modlich; M. Kamp; J. Christen; F. A. Ponce; E. Kohn; A. Krost
Metalorganic chemical vapor phase deposition of thick, crack-free GaN on Si can be performed either by patterning of the substrate and selective growth or by low-temperature (LT) AIN interlayers enabling very thick GaN layers. A reduction in dislocation density from 10 10 to 10 9 cm -2 is observed for LT-AIN interlayers which can be further improved using monolayer thick Si x N y in situ masking and subsequent lateral overgrowth. Crack-free AlGaN/GaN transistor structures show high room temperature mobilities of 1590 cm 2 /V s at 6.7×10 12 cm -2 sheet carrier concentration. Thick crack-free light emitters have a maximum output power of 0.42 mW at 498 nm and 20mA.
New Journal of Physics | 2007
Armin Dadgar; F. Schulze; M Wienecke; Aniko Gadanecz; J. Bläsing; Peter Veit; T. Hempel; A. Diez; J. Christen; A. Krost
GaN-on-silicon is a low-cost alternative to growth on sapphire or SiC. Today epitaxial growth is usually performed on Si(111), which has a threefold symmetry. The growth of single crystalline GaN on Si(001), the material of the complementary metal oxide semiconductor (CMOS) industry, is more difficult due to the fourfold symmetry of this Si surface leading to two differently aligned domains. We show that breaking the symmetry to achieve single crystalline growth can be performed, e.g. by off-oriented substrates to achieve single crystalline device quality GaN layers. Furthermore, an exotic Si orientation for GaN growth is Si(110), which we show is even better suited as compared to Si(111) for the growth of high quality GaN-on-silicon with a nearly threefold reduction in the full width at half maximum (FWHM) of the -scan. It is found that a twofold surface symmetry is in principal suitable for the growth of single crystalline GaN on Si.
Applied Physics Letters | 2004
Armin Dadgar; F. Schulze; J. Bläsing; A. Diez; A. Krost; Martin Neuburger; E. Kohn; I. Daumiller; Mike Kunze
AlInN∕GaN heterostructures have been proposed to possess advantageous properties for field-effect transistors (FETs) over AlGaN∕GaN [Kuzmik, IEEE Electron Device Lett. 22, 501 (2001); Yamaguchi et al., Phys. Status Solidi A 188, 895 (2001)]. A major advantage of such structures is that AlInN can be grown lattice-matched to GaN while still inducing high charge carrier densities at the heterointerface of around 2.7×1013cm−3 by the differences in spontaneous polarization. Additionally, it offers a higher band offset to GaN than AlGaN. We grew AlInN FET structures on Si(111) substrates by metalorganic chemical vapor phase epitaxy with In concentrations ranging from 9.5% to 24%. Nearly lattice-matched structures show sheet carrier densities of 3.2×1013cm−2 and mobilities of ∼406cm2∕Vs. Such Al0.84In0.16N FETs have maximum dc currents of 1.33A∕mm for devices with 1μm gate length.
Applied Physics Letters | 2002
J. Bläsing; A. Reiher; Armin Dadgar; A. Diez; A. Krost
Thin low-temperature AlN interlayers can be applied to reduce stress to grow thick crack-free AlGaN layers on GaN buffer layers on sapphire and thick crack-free GaN layers on Si. The mechanism leading to stress reduction is investigated by high resolution x-ray diffractometry measurements on metalorganic chemical vapor phase epitaxy grown samples on Si(111) with different interlayer deposition temperatures. A decrease of tensile stress with decreasing interlayer growth temperature is observed. From reciprocal space maps we conclude that interlayers grown at high temperatures are pseudomorphic, while grown at lower temperatures they are relaxed. Therefore, AlGaN or GaN layers grown on a low temperature AlN interlayer grow under compressive interlayer-induced strain. The stress in the GaN layer depends on the growth temperature that likely controls the amount of AlN interlayer relaxation.
Applied Physics Letters | 2001
Armin Dadgar; J. Christen; T. Riemann; S. Richter; J. Bläsing; A. Diez; A. Krost; A. Alam; M. Heuken
We present an electroluminescence test structure which consists of an InGaN/GaN multiquantum well as active region on the top of an AlGaN/GaN multilayer grown by metalorganic vapor phase epitaxy on Si(111) substrate. The integral room-temperature electroluminescence spectrum reveals a peak emission wavelength of 467 nm and a significantly higher brightness than an identical reference structure on sapphire substrate. In microelectroluminescence imaging, two emission peaks at 465 and 476 nm can be separated originating from locally different areas of the diode. Cathodoluminescence measurements in cross section and high-resolution x-ray diffraction measurements show that the structure is less strained than a sample without the AlGaN/GaN multilayer. The AlGaN/GaN multiple layer sequence which has a total thickness of 1.5 μm causes lattice relaxation during growth after a thickness of around 0.9 μm as directly visualized by cathodoluminescence line scans across the diode.
Applied Physics Letters | 2007
C. Hums; J. Bläsing; Armin Dadgar; A. Diez; T. Hempel; J. Christen; A. Krost; K. Lorenz; E. Alves
The authors present a detailed study of Al1−xInxN layers covering the whole composition range of 0.09<x<1. All layers were grown on GaN on Si(111) templates using metal-organic vapor phase epitaxy. For 0.13<x<0.32 samples grow fully strained and without phase separation. At higher In concentrations, the crystalline quality starts to deteriorate and a transition to three-dimensional growth is observed. A comparison of their experimental data with theoretically predicted phase diagrams reveals that biaxial strain increases the stability of the alloy.
Applied Physics Letters | 2003
Armin Dadgar; M. Poschenrieder; A. Reiher; J. Bläsing; J. Christen; A. Krtschil; T. Finger; T. Hempel; A. Diez; A. Krost
GaN growth on heterosubstrates usually leads to an initially high dislocation density at the substrate/seed layer interface. Due to the initial growth from small crystallites, tensile stress is generated at the coalescence boundaries during GaN growth. In addition, with tensile thermal stress this leads to cracking of GaN on Si and SiC substrates when cooling to room temperature. By partially masking the typically applied AlN seed layer on Si(111) with an in situ deposited SiN mask a reduction in tensile stress can be achieved for the subsequently grown GaN layer. Additionally, the 6 K GaN band edge photoluminescence is increased by about an order of magnitude and shifts by 21 meV, which can be attributed to a change in tensile stress of ∼0.8 GPa, in good agreement with x-ray diffractometry measurements. This improvement in material properties can be attributed to a reduction of grain boundaries by the growth of larger sized crystallites and lateral overgrowth of less defective GaN.
Applied Physics Letters | 2005
A. Krtschil; Armin Dadgar; N. Oleynik; J. Bläsing; A. Diez; A. Krost
A doping approach for p-type ZnO is reported which is reproducible and long-time stable. For p-type doping the zinc oxide layers were doped simultaneously with nitrogen and arsenic in metal organic vapor phase epitaxy. The conductivity type of the layers was investigated by scanning capacitance microscopy, a technique based on local capacitance-voltage analysis (C-V) with submicron spatial resolution. Depending on the growth parameters, largely extended p-type domains were observed, surrounded by n-type regions. The differences in local conductivity type are directly correlated to the topography as measured with atomic force microscopy revealing p-type for smooth, two-dimensional surfaces and n-type signals in the case of three-dimensional island growth or structural defects, i.e., microcracks or surface pits.