Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Bläsing is active.

Publication


Featured researches published by J. Bläsing.


Applied Physics Letters | 2002

Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach

Martin Zacharias; J. Heitmann; R. Scholz; U. Kahler; M. Schmidt; J. Bläsing

Phase separation and thermal crystallization of SiO/SiO2 superlattices results in ordered arranged silicon nanocrystals. The preparation method which is fully compatible with Si technologies enables independent control of particle size as well as of particle density and spatial position by using a constant stoichiometry of the layers. Transmission electron microscopy investigations confirm the size control in samples with an upper limit of the nanocrystal sizes of 3.8, 2.5, and 2.0 nm without decreasing the silicon nanocrystal density for smaller sizes. The nanocrystals show a strong luminescence intensity in the visible and near-infrared region. A size-dependent blueshift of the luminescence and a luminescence intensity comparable to porous Si are observed. Nearly size independent luminescence intensity without bleaching effects gives an indirect proof of the accomplishment of the independent control of crystal size and number.


Japanese Journal of Applied Physics | 2000

Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness

Armin Dadgar; J. Bläsing; A. Diez; A. Alam; M. Heuken; A. Krost

We present a simple method for the elimination of cracks in GaN layers grown on Si (111). Cracking of GaN on Si usually occurs due to large lattice and thermal mismatch of GaN and Si when layer thicknesses exceeds approximately 1 µm. By introducing thin, low-temperature AlN interlayers, we could significantly reduce the crack density of the GaN layer. The crack density is practically reduced to zero from an original crack density of 240 mm-2 corresponding to crack-free regions of 3×10-3 mm2. Additionally for the GaN layer with low temperature interlayers, the full width at half maximum X-ray (2024) rocking curve is improved from approximately 270 to 65 arcsec.


Applied Physics Letters | 1999

Thermal crystallization of amorphous Si/SiO2 superlattices

M. Zacharias; J. Bläsing; Peter Veit; L. Tsybeskov; Karl D. Hirschman; P. M. Fauchet

Annealing of amorphous Si/SiO2 superlattices produces Si nanocrystals. The crystallization has been studied by transmission electron microscopy and x-ray analysis. For a Si layer thinner than 7 nm, nearly perfect nanocrystals are found. For thicker layers, growth faults and dislocations exist. Decreasing the a-Si layer thickness increases the inhomogeneous strain by one order of magnitude. The origin of the strain in the crystallized structure is discussed. The crystallization temperature increases rapidly with decreasing a-Si layer thickness. An empirical model that takes into account the Si layer thickness, the Si/SiO2 interface range, and a material specific constant has been developed.


Applied Physics Letters | 2002

Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking

Armin Dadgar; M. Poschenrieder; J. Bläsing; K. Fehse; A. Diez; A. Krost

Thick, entirely crack-free GaN-based light-emitting diode structures on 2 in. Si(111) substrates were grown by metalorganic chemical-vapor deposition. The ∼2.8-μm-thick diode structure was grown using a low-temperature AlN:Si seed layer and two low-temperature AlN:Si interlayers for stress reduction. In current–voltage measurements, low turn-on voltages and a series resistance of 55 Ω were observed for a vertically contacted diode. By in situ insertion of a SixNy mask, the luminescence intensity is significantly enhanced. A light output power of 152 μW at a current of 20 mA and a wavelength of 455 nm is achieved.


Journal of Crystal Growth | 2003

MOVPE growth of GaN on Si(1 1 1) substrates

Armin Dadgar; M. Poschenrieder; J. Bläsing; O. Contreras; F. Bertram; T. Riemann; A. Reiher; Mike Kunze; I. Daumiller; A. Krtschil; A. Diez; A. Kaluza; A. Modlich; M. Kamp; J. Christen; F. A. Ponce; E. Kohn; A. Krost

Metalorganic chemical vapor phase deposition of thick, crack-free GaN on Si can be performed either by patterning of the substrate and selective growth or by low-temperature (LT) AIN interlayers enabling very thick GaN layers. A reduction in dislocation density from 10 10 to 10 9 cm -2 is observed for LT-AIN interlayers which can be further improved using monolayer thick Si x N y in situ masking and subsequent lateral overgrowth. Crack-free AlGaN/GaN transistor structures show high room temperature mobilities of 1590 cm 2 /V s at 6.7×10 12 cm -2 sheet carrier concentration. Thick crack-free light emitters have a maximum output power of 0.42 mW at 498 nm and 20mA.


New Journal of Physics | 2007

Epitaxy of GaN on silicon?impact of symmetry and surface reconstruction

Armin Dadgar; F. Schulze; M Wienecke; Aniko Gadanecz; J. Bläsing; Peter Veit; T. Hempel; A. Diez; J. Christen; A. Krost

GaN-on-silicon is a low-cost alternative to growth on sapphire or SiC. Today epitaxial growth is usually performed on Si(111), which has a threefold symmetry. The growth of single crystalline GaN on Si(001), the material of the complementary metal oxide semiconductor (CMOS) industry, is more difficult due to the fourfold symmetry of this Si surface leading to two differently aligned domains. We show that breaking the symmetry to achieve single crystalline growth can be performed, e.g. by off-oriented substrates to achieve single crystalline device quality GaN layers. Furthermore, an exotic Si orientation for GaN growth is Si(110), which we show is even better suited as compared to Si(111) for the growth of high quality GaN-on-silicon with a nearly threefold reduction in the full width at half maximum (FWHM) of the -scan. It is found that a twofold surface symmetry is in principal suitable for the growth of single crystalline GaN on Si.


Applied Physics Letters | 2004

High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111)

Armin Dadgar; F. Schulze; J. Bläsing; A. Diez; A. Krost; Martin Neuburger; E. Kohn; I. Daumiller; Mike Kunze

AlInN∕GaN heterostructures have been proposed to possess advantageous properties for field-effect transistors (FETs) over AlGaN∕GaN [Kuzmik, IEEE Electron Device Lett. 22, 501 (2001); Yamaguchi et al., Phys. Status Solidi A 188, 895 (2001)]. A major advantage of such structures is that AlInN can be grown lattice-matched to GaN while still inducing high charge carrier densities at the heterointerface of around 2.7×1013cm−3 by the differences in spontaneous polarization. Additionally, it offers a higher band offset to GaN than AlGaN. We grew AlInN FET structures on Si(111) substrates by metalorganic chemical vapor phase epitaxy with In concentrations ranging from 9.5% to 24%. Nearly lattice-matched structures show sheet carrier densities of 3.2×1013cm−2 and mobilities of ∼406cm2∕Vs. Such Al0.84In0.16N FETs have maximum dc currents of 1.33A∕mm for devices with 1μm gate length.


Applied Physics Letters | 2002

The origin of stress reduction by low-temperature AlN interlayers

J. Bläsing; A. Reiher; Armin Dadgar; A. Diez; A. Krost

Thin low-temperature AlN interlayers can be applied to reduce stress to grow thick crack-free AlGaN layers on GaN buffer layers on sapphire and thick crack-free GaN layers on Si. The mechanism leading to stress reduction is investigated by high resolution x-ray diffractometry measurements on metalorganic chemical vapor phase epitaxy grown samples on Si(111) with different interlayer deposition temperatures. A decrease of tensile stress with decreasing interlayer growth temperature is observed. From reciprocal space maps we conclude that interlayers grown at high temperatures are pseudomorphic, while grown at lower temperatures they are relaxed. Therefore, AlGaN or GaN layers grown on a low temperature AlN interlayer grow under compressive interlayer-induced strain. The stress in the GaN layer depends on the growth temperature that likely controls the amount of AlN interlayer relaxation.


Applied Physics Letters | 2001

Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer

Armin Dadgar; J. Christen; T. Riemann; S. Richter; J. Bläsing; A. Diez; A. Krost; A. Alam; M. Heuken

We present an electroluminescence test structure which consists of an InGaN/GaN multiquantum well as active region on the top of an AlGaN/GaN multilayer grown by metalorganic vapor phase epitaxy on Si(111) substrate. The integral room-temperature electroluminescence spectrum reveals a peak emission wavelength of 467 nm and a significantly higher brightness than an identical reference structure on sapphire substrate. In microelectroluminescence imaging, two emission peaks at 465 and 476 nm can be separated originating from locally different areas of the diode. Cathodoluminescence measurements in cross section and high-resolution x-ray diffraction measurements show that the structure is less strained than a sample without the AlGaN/GaN multilayer. The AlGaN/GaN multiple layer sequence which has a total thickness of 1.5 μm causes lattice relaxation during growth after a thickness of around 0.9 μm as directly visualized by cathodoluminescence line scans across the diode.


Applied Physics Letters | 2007

Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range

C. Hums; J. Bläsing; Armin Dadgar; A. Diez; T. Hempel; J. Christen; A. Krost; K. Lorenz; E. Alves

The authors present a detailed study of Al1−xInxN layers covering the whole composition range of 0.09<x<1. All layers were grown on GaN on Si(111) templates using metal-organic vapor phase epitaxy. For 0.13<x<0.32 samples grow fully strained and without phase separation. At higher In concentrations, the crystalline quality starts to deteriorate and a transition to three-dimensional growth is observed. A comparison of their experimental data with theoretically predicted phase diagrams reveals that biaxial strain increases the stability of the alloy.

Collaboration


Dive into the J. Bläsing's collaboration.

Top Co-Authors

Avatar

A. Krost

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Armin Dadgar

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

J. Christen

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

A. Diez

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

T. Hempel

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Peter Veit

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

H. Witte

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

F. Bertram

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

F. Schulze

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

A. Krtschil

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge