A.E.M. Holthuysen
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A.E.M. Holthuysen.
Arthritis & Rheumatism | 1999
Joyce B. J. van Meurs; Peter L. E. M. van Lent; A.E.M. Holthuysen; Irwin I. Singer; Ellen K. Bayne; Wim B. van den Berg
OBJECTIVE Two major cleavage sites, one mediated by metalloproteinases (MMPs) and the other by an as-yet unidentified enzyme termed aggrecanase, have been observed in aggrecan. To learn more about the relative contribution of these enzymes during cartilage degradation, this study assessed the occurrence of both specific neoepitopes in cartilage during murine arthritis and examined the correlation between neoepitope formation and different aspects of cartilage damage. METHODS Reversible cartilage damage was induced in mice in the zymosan-induced arthritis (ZIA) model, partly irreversible cartilage damage in the antigen-induced arthritis (AIA) model, and irreversible, destructive cartilage damage in the collagen-induced arthritis (CIA) model. Immunolocalization techniques were used to detect the specific C-terminal neoepitopes VDIPEN (MMPS) and NITEGE (aggrecanase). RESULTS In normal cartilage from young adult mice, no VDIPEN epitopes were detected, but a limited amount of NITEGE epitopes were already present. During the early phase of proteoglycan (PG) depletion, NITEGE expression was raised substantially in all arthritis models. VDIPEN epitopes were not detected in this early phase of cartilage destruction. When PG depletion progressed toward advanced cartilage damage, VDIPEN epitopes were induced. During ZIA, minimal induction of VDIPEN was observed, whereas in AIA, strong, but partly reversible, VDIPEN staining was evident, and in CIA, an extensive presence and persistence of the MMP-induced neoepitope was seen. When VDIPEN epitopes were intensely present, NITEGE epitopes were greatly reduced at that site in the cartilage. CONCLUSION Presence of VDIPEN epitopes in cartilage correlated with severe cartilage damage, but these epitopes were not detected during early PG degradation. This suggests a limited role for VDIPEN-inducing MMPs in early PG degradation during murine arthritis. In contrast, aggrecanase epitopes were induced before the appearance of VDIPEN epitopes, but they disappeared with progression of cartilage damage.
Arthritis & Rheumatism | 1999
Joyce B. J. van Meurs; Peter L. E. M. van Lent; Reinout Stoop; A.E.M. Holthuysen; Irwin I. Singer; Ellen K. Bayne; John S. Mudgett; Robin Poole; Clark Billinghurst; Peter M. van der Kraan; Pieter Buma; Wim B. van den Berg
OBJECTIVE The destruction of articular cartilage during arthritis is due to proteolytic cleavage of the extracellular matrix components. This study investigates the kinetic involvement of metalloproteinases (MMPs) in the degradation of the 2 major cartilage components, aggrecan and type II collagen, during murine antigen-induced arthritis (AIA). In addition, the role of stromelysin 1 (SLN-1) induction of MMP-induced neoepitopes was studied. METHODS VDIPEN neoepitopes in aggrecan and collagenase-induced COL2-3/4C neoepitopes in type II collagen were identified by immunolocalization. Stromelysin 1-deficient knockout (SLN1-KO) mice were used to study SLN-1 involvement. RESULTS In AIA, the VDIPEN epitopes in aggrecan appeared after initial proteoglycan (PG) depletion. The collagenase-induced type II collagen neoepitopes colocalized with VDIPEN epitopes. Remarkably, cartilage from arthritic SLN1-KO mice showed neither the induction of VDIPEN nor collagen cleavage-site neoepitopes during AIA, suggesting that stromelysin is a pivotal mediator in this process. PG depletion, as measured by the loss of Safranin O staining, was similar in SLN1-KO mice and wild-type strains. Furthermore, in vitro induction of VDIPEN epitopes in aggrecan and COL2-3/4C epitopes in type II collagen, on exposure of cartilage to interleukin-1, could not be accomplished in SLN1-KO mice, whereas intense staining was achieved for both epitopes in cartilage of wild-type strains. CONCLUSION This study emphasizes that SLN-1 is essential in the induction of MMP-specific aggrecan and collagen cleavage sites during AIA. It suggests that SLN-1 is not a dominant enzyme in PG breakdown, but that it activates procollagenases and is crucial in the initiation of collagen damage.
American Journal of Pathology | 2001
Peter L. E. M. van Lent; Karin C. Nabbe; A.B. Blom; A.E.M. Holthuysen; Annet Sloetjes; Leo B. A. Van De Putte; Sjef Verbeek; Wim B. van den Berg
IgG-containing immune complexes, which are found in most RA joints, communicate with hematopoietic cells using three classes of Fc receptors(Fc gamma RI, -II, -III). In a previous study we found that if a chronic T-cell-mediated antigen-induced arthritis (AIA) was elicited in knee joints of FcR gamma-chain-deficient mice that lack functional Fc gamma RI and Fc gamma RIII, joint inflammation was comparable but severe cartilage destruction was absent. We now examined the individual role of the stimulatory Fc gamma RI and Fc gamma RIII and inhibitory Fc gamma RII in inflammation and functional cartilage damage in knee joints with AIA using Fc gamma RI-, Fc gamma RII-, and Fc gamma RIII-deficient mice. Three weeks after immunization with the antigen-methylated bovine serum albumin (BSA), cellular (T-cell responses as measured by lymphocyte proliferation) immunity raised against mBSA was comparable in all groups examined. Humoral (total IgG, IgG1, IgG2a, and IgG2b levels) immunity against mBSA was comparable in Fc gamma RI-/- and Fc gamma RIII-/- but higher in Fc gamma RII-/- if compared to controls. Joint swelling as measured by (99m)Tc uptake at days 1, 3, and 7 was similar in Fc gamma RI-/- and Fc gamma RIII-/- mice and significantly higher in Fc gamma RII-/-. Chronic inflammation and cartilage damage (depletion of proteoglycans, metalloproteinase (MMP)-induced neoepitopes, and matrix erosion) was studied histologically in total knee joint sections stained with hematoxylin or safranin-O. Histologically, at day 7 after AIA induction, exudate and infiltrate in the knee joint was similar in Fc gamma RI-/- and Fc gamma RIII-/- and significantly higher (230% and 340%) in Fc gamma RII-/- mice if compared to controls. Aggrecan breakdown in cartilage caused by MMPs and, which is related to severe irreversible cartilage erosion, was further studied by immunolocalization of MMP-mediated neoepitopes (VDIPEN) and image analysis. MMP-induced neoepitopes determined in various cartilage layers (tibia and femur) were primarily inhibited in Fc gamma RI-/- (79 to 87% and 87 to 88%, respectively) and comparable in Fc gamma RIII-/-. VDIPEN neoepitopes were much higher (82 to 122% and 200 to 250%, respectively) in Fc gamma RII-/- mice. Initial depletion of proteoglycans was similar (60 to 100%) in all groups. In the chronic phase, cartilage matrix erosion in the lateral and medial tibia was significantly elevated in Fc gamma RII-/- (222% and 186%, respectively) but not in Fc gamma RI-/- or Fc gamma RIII-/- mice. These results suggest that during T-cell-mediated AIA, Fc gamma RI and Fc gamma RIII act in concert in acute and chronic inflammation whereas Fc gamma RI is the dominant FcR involved in severe cartilage destruction. Fc gamma RII is a crucial inhibiting factor in acute and chronic inflammation and cartilage erosion.
Arthritis & Rheumatism | 2000
P.L.E.M. van Lent; Aj van Vuuren; A.B. Blom; A.E.M. Holthuysen; L. B. A. Van De Putte; J.G.J. van de Winkel; W.B. van den Berg
OBJECTIVE To study the role of Fc receptor (FcR) gamma chain in inflammation and cartilage destruction during antigen-induced arthritis (AIA). METHODS FcR gamma-/- mice and controls were immunized with methylated bovine serum albumin (mBSA) in Freunds complete adjuvant, followed by induction of arthritis by local injection of mBSA into the right knee joint. Joint inflammation was studied by 99mTc uptake and by histology. Breakdown of proteoglycans from the cartilage matrix was determined by loss of red staining in Safranin O-stained knee joint sections, and matrix metalloproteinase (MMP)-mediated aggrecan degradation was determined by immunolocalization using anti-VDIPEN antibodies. Chondrocyte death was measured by determining empty lacunae in hematoxylin-stained sections and with the TUNEL assay in cryostat sections. Erosion was detected as ruffling of the cartilage surface. RESULTS Joint swelling, as measured by 99mTc uptake on days 1, 3, and 7, was significantly decreased in FcR gamma-/- mice compared with controls. On day 7 after AIA induction, sustained joint inflammation, as seen histologically, was not significantly lower in FcR gamma-/- deficient mice. In various cartilage layers (femur, tibia, patella) of central arthritic knee joints, marked depletion of proteoglycans (40-70%), chondrocyte death (25-50%), and mild surface erosion were found. In FcR gamma-/- knee joints, depletion of proteoglycans was comparable (40-70%). Strikingly, chondrocyte death and matrix erosion were absent. Furthermore, MMP-induced aggrecan neoepitopes, which were abundantly found in controls, were also absent in FcR gamma-/-. Nevertheless, latent MMPs were present in the cartilage matrix as seen in APMA-activated patellae. CONCLUSION FcR gamma chain is involved in the severity of acute and sustained inflammation and is a crucial factor in cartilage erosion during AIA, probably by regulating activation of latent MMPs present in the cartilage matrix.
Annals of the Rheumatic Diseases | 1998
P.L.E.M. van Lent; A.E.M. Holthuysen; N. van Rooijen; L B A V. De Putte; W B V. Den Berg
OBJECTIVE To investigate whether local removal of phagocytic synovial lining cells (SLCs) from the knee joint before onset of collagen type II arthritis has an effect on development of cartilage destruction. METHODS Phagocytic SLCs were selectively depleted by a single injection of clodronate laden liposomes in the knee joint seven days before induction of collagen type II arthritis (CIA). Clodronate laden liposomes were given in one knee joint either alone or in combination with a short-term oral treatment of dexamethasone. Cartilage damage including proteoglycan depletion and chondrocyte death was measured in total knee joints sections stained with safranin-o or haematoxylin. RESULTS Local removal of phagocytic SLCs, seven days before arthritis onset, prevented cell influx for the larger part. Chondrocyte death was significantly decreased in the SLC depleted arthritic joint both at an early (6 days) and late (12 days) time point after CIA induction. However, depletion of proteoglycans from femoral and patellar cartilage layers was not prevented. If the mild acute inflammation caused by a single clodronate laden liposome injection in the left knee joint, was blocked by a short-term (on consecutive days 9, 8, 7, 6, 5 before CIA onset) oral treatment with dexamethasone, cell influx, but also proteoglycan depletion was almost completely blocked. In the contralateral control right knee joint prominent cell influx and severe cartilage damage was observed, indicating that there was no effect of dexamethasone anymore at the onset of CIA. CONCLUSIONS This study shows that removal of phagocytic lining cells before CIA induction, particularly in the presence of a short-term treatment with dexamethasone, decreases cartilage destruction.
American Journal of Pathology | 2003
Peter L. E. M. van Lent; Karin C. Nabbe; Peter Boross; A.B. Blom; J. Roth; A.E.M. Holthuysen; Annet Sloetjes; Sjef Verbeek; Wim B. van den Berg
Studies of FcgammaRII-/- mice identified the inhibitory function of this receptor in joint inflammation and cartilage destruction induced with immune complexes (ICs). To extend our insight in the role of FcgammaRII in arthritis, we explored the role of FcgammaRII in the absence of activating receptors I and III using FcgammaRI/III-/- as well as FcgammaRI/II/III-/- mice. When antigen-induced arthritis (AIA) was elicited, which is a mixture of T cell and IC-driven inflammation, arthritis was almost absent at day 7 in FcgammaRI/III-/- mice. Remarkably, in FcgammaRI/II/III-/- mice, this model induced a tremendously increased arthritis as compared to wild-type controls. This implies that FcgammaRII regulates joint inflammation also in the absence of activating FcgammaRI and III. To confirm the IC specificity of this finding, similar studies were done with ICs or zymosan as arthritogenic stimuli. Strongly elevated inflammation was found in FcgammaRI/II/III-/- mice with IC but not with zymosan. Clearance studies identified accumulation of IgG in the knee joint in the absence of FcgammaRII. Moreover, macrophages expressing only FcgammaRII showed prominent endocytosis of preformed soluble ICs not different from controls. In total absence of FcgammaR (FcgammaRI/II/III-/-), macrophages completely failed to endocytose ICs. Although joint inflammation was much higher in AIA arthritic knee joints of FcgammaRI/II/III-/- and the inflammatory cells still expressed an inflammatory phenotype, severe cartilage destruction (MMP-mediated neoepitopes in the matrix and chondrocyte death) was completely prevented in contrast to the marked destruction which was observed in the wild-type. Our study indicates that FcgammaRII reduces joint inflammation in the absence of activating FcgammaR by promoting endocytosis and clearance of ICs from the joint. Infiltrating cells, which fail to express activating FcgammaR although they still become stimulated are no longer capable of inducing severe cartilage destruction.
Arthritis Research & Therapy | 2000
A.B. Blom; Peter L. E. M. van Lent; Hanneke van Vuuren; A.E.M. Holthuysen; Cor Jacobs; Leo B. A. Van De Putte; Jan G van de Winkel; Wim B. van den Berg
We investigated the role of Fcγ receptors (FcγRs) on synovial macrophages in immune-complex-mediated arthritis (ICA). ICA elicited in knee joints of C57BL/6 mice caused a short-lasting, florid inflammation and reversible loss of proteoglycans (PGs), moderate chondrocyte death, and minor erosion of the cartilage. In contrast, when ICA was induced in knee joints of Fc receptor (FcR) γ-chain-/- C57BL/6 mice, which lack functional FcγRI and RIII, inflammation and cartilage destruction were prevented. When ICA was elicited in DBA/1 mice, a very severe, chronic inflammation was observed, and significantly more chondrocyte death and cartilage erosion than in arthritic C57BL/6 mice. The synovial lining and peritoneal macrophages of naïve DBA/1 mice expressed a significantly higher level of FcγRs than was seen in C57BL/6 mice. Moreover, elevated and prolonged expression of IL-1 was found after stimulation of these cells with immune complexes. Zymosan or streptococcal cell walls caused comparable inflammation and only mild cartilage destruction in all strains. We conclude that FcγR expression on synovial macrophages may be related to the severity of synovial inflammation and cartilage destruction during ICA.
Annals of the Rheumatic Diseases | 1999
J.B. van Meurs; P.L.E.M. van Lent; A. A. J. Van De Loo; A.E.M. Holthuysen; Ellen K. Bayne; Irwin I. Singer; W.B. van den Berg
OBJECTIVE Murine antigen induced arthritis (AIA) is a chronic, smouldering inflammation. Flares of arthritis can be induced by antigen rechallenge or exposure to inflammatory mediators like interleukin 1 (IL1). These flares are characterised by a fast and marked proteoglycan (PG) depletion if compared with the initial arthritis. This study investigated the involvement of metalloproteinases in both the initial and the flare phase of arthritis. METHODS Murine AIA was induced and a flare up of arthritis was induced by injection of 10 ng of IL1β. Messenger RNA levels of MMP-1 and -3 were studied by RT-PCR. MMP activity in cartilage, during both primary AIA as well as the flare up of arthritis, was studied by immunodetection of MMP specific neoepitopes in aggrecan (VDIPEN). Cartilage just before flare induction was analysed for presence of MMPs at the mRNA level as well as at the protein level by zymography. RESULTS At the onset of AIA, a fast upregulation of mRNA for stromelysin and collagenase was noted. However, no VDIPEN epitopes were detected during this early phase of arthritis. They appeared when PG depletion was severe at day 7 of arthritis and disappeared when cartilage was repaired. IL1 injection into a knee joint at week 4 of AIA caused a flare up of arthritis, coinciding with a fast and marked PG degradation. This degradation was characterised by accelerated expression of VDIPEN epitopes if compared with the expression in primary AIA. Analysis of cartilage at week 4 of AIA showed still increased mRNA levels of MMP-1 and -3. Moreover, increased levels of latent MMPs were present as well, as APMA activation induced profound VDIPEN epitope. In vitro exposure to IL1 did show increased PG breakdown but no VDIPEN expression, suggesting that factors in addition to IL1 are needed to cause the in vivo VDIPEN expression. CONCLUSIONS The fast and marked PG depletion seen in a flare up of AIA coincides with accelarated expression of MMP induced neoepitopes compared with expression during primary AIA. This accelerated expression is probably linked to increased levels of latent enzyme, which were found to be present in the cartilage before induction of a flare up.
Arthritis Research & Therapy | 2005
Karin C. Nabbe; Peter L. E. M. van Lent; A.E.M. Holthuysen; Annet Sloetjes; Alisa E. Koch; Timothy R. D. J. Radstake; Wim B. van den Berg
During immune-complex-mediated arthritis (ICA), severe cartilage destruction is mediated by Fcγ receptors (FcγRs) (mainly FcγRI), cytokines (e.g. IL-1), and enzymes (matrix metalloproteinases (MMPs)). IL-13, a T helper 2 (Th2) cytokine abundantly found in synovial fluid of patients with rheumatoid arthritis, has been shown to reduce joint inflammation and bone destruction during experimental arthritis. However, the effect on severe cartilage destruction has not been studied in detail. We have now investigated the role of IL-13 in chondrocyte death and MMP-mediated cartilage damage during ICA. IL-13 was locally overexpressed in knee joints after injection of an adenovirus encoding IL-13 (AxCAhIL-13), 1 day before the onset of arthritis; injection of AxCANI (an empty adenoviral construct) was used as a control. IL-13 significantly increased the amount of inflammatory cells in the synovial lining and the joint cavity, by 30% to 60% at day 3 after the onset of ICA. Despite the enhanced inflammatory response, chondrocyte death was diminished by two-thirds at days 3 and 7. The mRNA level of FcγRI, a receptor shown to be crucial in the induction of chondrocyte death, was significantly down-regulated in synovium. Furthermore, MMP-mediated cartilage damage, measured as neoepitope (VDIPEN) expression using immunolocalization, was halved. In contrast, mRNA levels of MMP-3, -9, -12, and -13 were significantly higher and IL-1 protein, which induces production of latent MMPs, was increased fivefold by IL-13. This study demonstrates that IL-13 overexpression during ICA diminished both chondrocyte death and MMP-mediated VDIPEN expression, even though joint inflammation was enhanced.
Journal of Leukocyte Biology | 2001
P.L.E.M. van Lent; R. Licht; H.B.P.M. Dijkman; A.E.M. Holthuysen; J.H.M. Berden; W.B. van den Berg
Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex–mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.