Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. E. Schuh is active.

Publication


Featured researches published by A. E. Schuh.


Molecular Ecology | 2013

Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity

Colin W. Rundel; Michael B. Wunder; Allison H. Alvarado; Kristen C. Ruegg; Ryan J. Harrigan; A. E. Schuh; Jeffrey F. Kelly; Rodney B. Siegel; David F. DeSante; Thomas B. Smith; John Novembre

Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilsons warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.


Global Change Biology | 2013

Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape.

A. E. Schuh; Thomas Lauvaux; Tristram O. West; A. Scott Denning; Kenneth J. Davis; Natasha L. Miles; Scott J. Richardson; Marek Uliasz; Erandathie Lokupitiya; Daniel Cooley; Arlyn E. Andrews; Stephen M. Ogle

An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-five different associated projects were conducted across five US agencies over the course of nearly a decade involving hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom-up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates were compared to the inventory from three different inversion systems, representing spatial scales varying from high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport models and optimization techniques. The inversion-based mean CO2 -C sink estimates were generally slightly larger, 8-20% for PSU, 10-20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the inventory estimate of 135 TgC. While the comparisons show that the MCI region-wide C sink is robust across inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at sub-regional scales with a relatively high density of CO2 observations and adequate information on atmospheric transport in the region.


Tellus B | 2012

Network design for mesoscale inversions of CO2 sources and sinks

Thomas Lauvaux; A. E. Schuh; Marc Bocquet; Lin Wu; Scott J. Richardson; Natasha L. Miles; Kenneth J. Davis

ABSTRACT Recent instrumental deployments of regional observation networks of atmospheric CO2 mixing ratios have been used to constrain carbon sources and sinks using inversion methodologies. In this study, we performed sensitivity experiments using observation sites from the Mid Continent Intensive experiment to evaluate the required spatial density and locations of CO2 concentration towers based on flux corrections and error reduction analysis. In addition, we investigated the impact of prior flux error structures with different correlation lengths and biome information. We show here that, while the regional carbon balance converged to similar annual estimates using only two concentration towers over the region, additional sites were necessary to retrieve the spatial flux distribution of our reference case (using the entire network of eight towers). Local flux corrections required the presence of observation sites in their vicinity, suggesting that each tower was only able to retrieve major corrections within a hundred of kilometres around, despite the introduction of spatial correlation lengths (~100 to 300 km) in the prior flux errors. We then quantified and evaluated the impact of the spatial correlations in the prior flux errors by estimating the improvement in the CO2 model-data mismatch of the towers not included in the inversion. The overall gain across the domain increased with the correlation length, up to 300 km, including both biome-related and non-biome-related structures. However, the spatial variability at smaller scales was not improved. We conclude that the placement of observation towers around major sources and sinks is critical for regional-scale inversions in order to obtain reliable flux distributions in space. Sparser networks seem sufficient to assess the overall regional carbon budget with the support of flux error correlations, indicating that regional signals can be recovered using hourly mixing ratios. However, the smaller spatial structures in the posterior fluxes are highly constrained by assumed prior flux error correlation lengths, with no significant improvement at only a few hundreds of kilometres away from the observation sites.


Tellus B | 2010

Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations.

K. D. Corbin; A.S. Denning; Erandathie Lokupitiya; A. E. Schuh; Natasha L. Miles; Kenneth J. Davis; Scott J. Richardson; Ian T. Baker

Human conversion of natural ecosystems to croplands modifies not only the exchange of water and energy between the surface and the atmosphere, but also carbon fluxes. To investigate the impacts of crops on carbon fluxes and resulting atmospheric CO2 concentrations in the mid-continent region of the United States, we coupled a crop-specific phenology and physiology scheme for corn, soybean and wheat to the coupled ecosystem–atmosphere model SiB3–RAMS. Using SiBcrop–RAMS improved carbon fluxes at the local scale and had regional impacts, decreasing the spring uptake and increasing the summer uptake over the mid-continent. The altered fluxes changed the mid-continent atmospheric CO2 concentration field at 120 m compared to simulations without crops: concentrations increased in May and decreased >20 ppm during July and August, summer diurnal cycle amplitudes increased, synoptic variability correlations improved and the gradient across the mid-continent region increased. These effects combined to reduce the squared differences between the model and high-precision tower CO2 concentrations by 20%. Synoptic transport of the large-scale N–S gradient caused significant day-to-day variability in concentration differences measured between the towers. This simulation study shows that carbon exchange between crops and the atmosphere significantly impacts regional CO2 fluxes and concentrations.


Science | 2012

Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; Tim Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G. James Collatz; Scott Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Environmental and Ecological Statistics | 2013

A constrained least-squares approach to combine bottom-up and top-down CO2 flux estimates

Daniel Cooley; F. Jay Breidt; Stephen M. Ogle; A. E. Schuh; Thomas Lauvaux

Terrestrial CO2 flux estimates are obtained from two fundamentally different methods generally termed bottom-up and top-down approaches. Inventory methods are one type of bottom-up approach which uses various sources of information such as crop production surveys and forest monitoring data to estimate the annual CO2 flux at locations covering a study region. Top-down approaches are various types of atmospheric inversion methods which use CO2 concentration measurements from monitoring towers and atmospheric transport models to estimate CO2 flux over a study region. Both methods can also quantify the uncertainty associated with their estimates. Historically, these two approaches have produced estimates that differ considerably. The goal of this work is to construct a statistical model which sensibly combines estimates from the two approaches to produce a new estimate of CO2 flux for our study region. The two approaches have complementary strengths and weaknesses, and our results show that certain aspects of the uncertainty associated with each of the approaches are greatly reduced by combining the methods. Our model is purposefully simple and designed to take the two approaches’ estimates and measures of uncertainty at ‘face value’. Specifically, we use a constrained least-squares approach to appropriately weigh the estimates by the inverse of their variance, and the constraint imposes agreement between the two sources. Our application involves nearly 18,000 flux estimates for the upper midwest United States. The constrained dependencies result in a non-sparse covariance matrix, but computation requires only minutes due to the structure of the model.


Science | 2012

Letter tot the editor: Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Science | 2012

Iconic CO2 Time Series at Risk - eScholarship

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Biogeosciences | 2009

A regional high-resolution carbon flux inversion of North America for 2004

A. E. Schuh; A. S. Denning; Katherine D. Corbin; Ian T. Baker; Marek Uliasz; N. Parazoo; Arlyn E. Andrews; Doug Worthy


Atmospheric Chemistry and Physics | 2011

Constraining the CO 2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system

Thomas Lauvaux; A. E. Schuh; Marek Uliasz; Scott J. Richardson; Natasha L. Miles; Arlyn E. Andrews; Colm Sweeney; L. I. Diaz; Douglas K. Martins; Paul B. Shepson; Kenneth J. Davis

Collaboration


Dive into the A. E. Schuh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marek Uliasz

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha L. Miles

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Ogle

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Thomas Lauvaux

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

N. C. Parazoo

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Scott J. Richardson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Daniel Cooley

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge