Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen M. Ogle is active.

Publication


Featured researches published by Stephen M. Ogle.


Philosophical Transactions of the Royal Society B | 2008

Greenhouse gas mitigation in agriculture

Pete Smith; Daniel Martino; Zucong Cai; Daniel Gwary; H. Henry Janzen; Pushpam Kumar; Bruce A. McCarl; Stephen M. Ogle; Frank P. O'Mara; Charles W. Rice; Bob Scholes; Oleg Sirotenko; Mark Howden; Tim A. McAllister; Genxing Pan; Vladimir Romanenkov; Uwe A. Schneider; Sirintornthep Towprayoon; Martin Wattenbach; Jo Smith

Agricultural lands occupy 37% of the earths land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500–6000 Mt CO2-eq. yr−1, with economic potentials of approximately 1500–1600, 2500–2700 and 4000–4300 Mt CO2-eq. yr−1 at carbon prices of up to 20, up to 50 and up to 100 US


Nature | 2016

Climate-smart soils

Keith Paustian; Johannes Lehmann; Stephen M. Ogle; David S. Reay; G. Philip Robertson; Pete Smith

t CO2-eq.−1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000 Mt CO2-eq. yr−1 at 0–20, 0–50 and 0–100 US


Gcb Bioenergy | 2013

Management swing potential for bioenergy crops

Sarah C. Davis; Robert M. Boddey; Bruno José Rodrigues Alves; Annette Cowie; Brendan H. George; Stephen M. Ogle; Pete Smith; Meine van Noordwijk; Mark T. van Wijk

t CO2-eq.−1, respectively.


Eos, Transactions American Geophysical Union | 2008

Estimating Agricultural Nitrous Oxide Emissions

Stephen J. Del Grosso; Tom Wirth; Stephen M. Ogle; William J. Parton

Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.


American Midland Naturalist | 2003

Impacts of Exotic Annual Brome Grasses (Bromus spp.) on Ecosystem Properties of Northern Mixed Grass Prairie

Stephen M. Ogle; William A. Reiners; Kenneth G. Gerow

Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production system. Here, we review the greenhouse gas balance and ‘management swing potential’ of seven different bioenergy cropping systems in temperate and tropical regions. Prior land use, harvesting techniques, harvest timing, and fertilization are among the key management considerations that can swing the greenhouse gas balance of bioenergy from positive to negative or the reverse. Although the management swing potential is substantial for many cropping systems, there are some species (e.g., soybean) that have such low bioenergy yield potentials that the environmental impact is unlikely to be reversed by management. High‐yielding bioenergy crops (e.g., corn, sugarcane, Miscanthus, and fast‐growing tree species), however, can be managed for environmental benefits or losses, suggesting that the bioenergy sector would be better informed by incorporating management‐based evaluations into classifications of bioenergy feedstocks.


Global Change Biology | 2014

Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action

Stephen M. Ogle; Lydia P. Olander; Lini Wollenberg; Todd S. Rosenstock; Francesco N. Tubiello; Keith Paustian; Leandro Buendia; Alison Nihart; Pete Smith

Emissions of nitrous oxide (N2O), a potent greenhouse gas, tend to be underestimated by standard methods of quantifi cation provided by the Intergovernmental Panel on Climate Change (IPCC) [IPCC, 2006], recent research suggests. Better quantification of agricultural N2O emissions improves greenhouse gas inventories, allows for better evaluation of the environmental impacts of different cropping systems, and increases the understanding of the nitrogen (N) cycle in general. Proper quantifi cation of N2O emissions is particularly important in the context of calculating net greenhouse gas emissions from biofuel cropping systems because these emissions offset the greenhouse gas benefits of displacing fossil fuel and can even lead to biofuel systems being a net greenhouse gas source [Crutzen et al., 2008]. The global warming potential of N2O is approximately 300 times that of carbon dioxide, and N2O emissions represent approximately 6% of the global anthropogenic greenhouse gas source [IPCC, 2007]. N2O also contributes to stratospheric ozone destruction. N2O is produced in soils through the microbial processes of nitrifi cation and denitrification. Soil water content, temperature, texture, and carbon availability infl uence N2O emissions, but the strongest correlate is usually N inputs to the system, especially at large scales [Stehfest and Bouwman, 2006]. In addition to direct emissions, N inputs to agricultural soils also contribute to N2O emissions indirectly [IPCC, 2006] when nitrate that has leached or run off from soil is converted to N2O via aquatic denitrifi cation and when volatilized non-N2O N-oxides and ammonia are redeposited on soils and converted to N2O.


Global Change Biology | 2013

Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape.

A. E. Schuh; Thomas Lauvaux; Tristram O. West; A. Scott Denning; Kenneth J. Davis; Natasha L. Miles; Scott J. Richardson; Marek Uliasz; Erandathie Lokupitiya; Daniel Cooley; Arlyn E. Andrews; Stephen M. Ogle

Abstract Annual brome grasses, Bromus japonicus and B. tectorum, are common exotic plants in the northern mixed grass prairies of North America. As annuals, the bromes die following seed set in late spring, creating a functional difference between them and native perennial grasses because perennials continue to maintain live shoots into the summer and root systems throughout the year. Our objective was to investigate how this functional difference alters ecosystem properties over the growing season, including soil moisture content, quantity of plant biomass, litter accumulation and aboveground litter decomposition. We conducted an experiment in which the annual bromes were removed from treatment plots to compare with adjacent reference plots. While this experiment served as a direct test for brome impacts, observational plots also were sampled to determine if impacts were apparent in an unmanipulated system. A litter bag experiment was conducted to evaluate impacts of brome grasses on decomposition. Experimental removal of brome grasses led to more biomass both above- and belowground at the end of the growing season, and high brome observational plots averaged 28% less aboveground biomass and 40% less belowground biomass than low brome plots. In contrast, removal of brome grasses did not produce a consistent impact on soil moisture content between sites or among months, and none of measurable impacts from the removal experiment were significant in the observational study. Bromes slowed decomposition of aboveground litter at both sites. However, the overall impact on litter accumulation was only significant at one site, where brome removal reduced surface litter in the latter half of the growing season and high brome observational plots averaged 36% more litter than low brome plots. This study demonstrates how the brome functional type alters several properties in an ecosystem traditionally dominated by perennial grasses.


Nutrient Cycling in Agroecosystems | 2010

15N isotopic crop residue cycling studies and modeling suggest that IPCC methodologies to assess residue contributions to N2O-N emissions should be reevaluated

Jorge A. Delgado; Stephen J. Del Grosso; Stephen M. Ogle

Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries.


Canadian Journal of Soil Science | 2005

Soil organic carbon as an indicator of environmental quality at the national scale : Inventory monitoring methods and policy relevance

Stephen M. Ogle; Keith Paustian

An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-five different associated projects were conducted across five US agencies over the course of nearly a decade involving hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom-up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates were compared to the inventory from three different inversion systems, representing spatial scales varying from high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport models and optimization techniques. The inversion-based mean CO2 -C sink estimates were generally slightly larger, 8-20% for PSU, 10-20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the inventory estimate of 135 TgC. While the comparisons show that the MCI region-wide C sink is robust across inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at sub-regional scales with a relatively high density of CO2 observations and adequate information on atmospheric transport in the region.


Journal of Soil and Water Conservation | 2009

Counting carbon on the farm: Reaping the benefits of carbon offset programs

Keith Paustian; John Brenner; Mark Easter; Kendrick Killian; Stephen M. Ogle; Carolyn Olson; Jill Schuler; Roel Vining; Steve Williams

It is difficult to quantify nitrogen (N) losses from agricultural systems; however, we can use 15N isotopic techniques to conduct site-specific studies to increase our knowledge about N management and fate. Our manuscript analyzes two reviews of selected 15N isotopic studies conducted to monitor N fate. The mechanistic foci of these studies include crop residue exchange and N fate in farming systems. Analysis of the data presented in these studies supports the claim that the average N losses are greater from inorganic N fertilizer inputs than organic crop residue N inputs. Additionally we conducted unique DAYCENT simulations of the effects of crop residue on nitrous oxide (N2O-N) emissions and nitrate (NO3-N) leaching. The simulation evaluations support the crop residue 15N exchange studies and show lower leaching and N2O-N emissions from crop residue sources when compared to N fertilizer. The 15N data suggest that the N in the crop residue pool must be recycled, and that this is a slower and more protected pool when compared to the readily available fertilizer. The results suggest that the Intergovernmental Panel on Climate Change (IPCC) methodology should be reevaluated to determine whether the direct and indirect N2O-N emission coefficients need to be lowered to reflect fewer N2O-N emissions from high C/N crop residue N inputs. The data suggest that accounting for nutrient cycling has implications for public policy associated with the United Nations Framework Convention on Climate Change (UNFCCC) and mitigation of N2O-N emissions from agricultural soils. Additional crop residue exchange studies, field N2O-N and NO3-N leaching and support model evaluations are needed across different worldwide agroecosystems.

Collaboration


Dive into the Stephen M. Ogle's collaboration.

Top Co-Authors

Avatar

Keith Paustian

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

F. Jay Breidt

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Pete Smith

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar

A. E. Schuh

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Mark Easter

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genxing Pan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge