A. Eliot Shearer
Roy J. and Lucille A. Carver College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Eliot Shearer.
Proceedings of the National Academy of Sciences of the United States of America | 2010
A. Eliot Shearer; Adam P. DeLuca; Michael S. Hildebrand; Kyle R. Taylor; José Gurrola; Steve Scherer; Todd E. Scheetz; Richard J.H. Smith
The extreme genetic heterogeneity of nonsyndromic hearing loss (NSHL) makes genetic diagnosis expensive and time consuming using available methods. To assess the feasibility of target-enrichment and massively parallel sequencing technologies to interrogate all exons of all genes implicated in NSHL, we tested nine patients diagnosed with hearing loss. Solid-phase (NimbleGen) or solution-based (SureSelect) sequence capture, followed by 454 or Illumina sequencing, respectively, were compared. Sequencing reads were mapped using GSMAPPER, BFAST, and BOWTIE, and pathogenic variants were identified using a custom-variant calling and annotation pipeline (ASAP) that incorporates publicly available in silico pathogenicity prediction tools (SIFT, BLOSUM, Polyphen2, and Align-GVGD). Samples included one negative control, three positive controls (one biological replicate), and six unknowns (10 samples total), in which we genotyped 605 single nucleotide polymorphisms (SNPs) by Sanger sequencing to measure sensitivity and specificity for SureSelect-Illumina and NimbleGen-454 methods at saturating sequence coverage. Causative mutations were identified in the positive controls but not in the negative control. In five of six idiopathic hearing loss patients we identified the pathogenic mutation. Massively parallel sequencing technologies provide sensitivity, specificity, and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss.
Genetics in Medicine | 2010
William J. Kimberling; Michael S. Hildebrand; A. Eliot Shearer; Maren Jensen; Jennifer A. Halder; Karmen M Trzupek; Edward S. Cohn; Richard G. Weleber; Edwin M. Stone; Richard J.H. Smith
Purpose: Usher syndrome is a major cause of genetic deafness and blindness. The hearing loss is usually congenital and the retinitis pigmentosa is progressive and first noticed in early childhood to the middle teenage years. Its frequency may be underestimated. Newly developed molecular technologies can detect the underlying gene mutation of this disorder early in life providing estimation of its prevalence in at risk pediatric populations and laying a foundation for its incorporation as an adjunct to newborn hearing screening programs.Methods: A total of 133 children from two deaf and hard of hearing pediatric populations were genotyped first for GJB2/6 and, if negative, then for Usher syndrome. Children were scored as positive if the test revealed ≥1 pathogenic mutations in any Usher gene.Results: Fifteen children carried pathogenic mutations in one of the Usher genes; the number of deaf and hard of hearing children carrying Usher syndrome mutations was 15/133 (11.3%). The population prevalence was estimated to be 1/6000.Conclusion: Usher syndrome is more prevalent than has been reported before the genome project era. Early diagnosis of Usher syndrome has important positive implications for childhood safety, educational planning, genetic counseling, and treatment. The results demonstrate that DNA testing for Usher syndrome is feasible and may be a useful addition to newborn hearing screening programs.
Journal of Medical Genetics | 2013
A. Eliot Shearer; E. Ann Black-Ziegelbein; Michael S. Hildebrand; Robert W. Eppsteiner; Harini Ravi; Swati Joshi; Angelica C Guiffre; Christina M. Sloan; Scott Happe; Susanna D Howard; Barbara Novak; Adam P. DeLuca; Kyle R. Taylor; Todd E. Scheetz; Terry A. Braun; Thomas L. Casavant; William J Kimberling; Emily LeProust; Richard J.H. Smith
Background Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we tested 100 persons with presumed genetic NSHL and in so doing established sequencing requirements for maximum sensitivity and defined MPS quality score metrics that obviate Sanger validation of variants. Methods We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance computing cluster for bioinformatics analysis. Results To obtain maximum variant sensitivity with this platform 3.2–6.3 million total mapped sequencing reads per sample were required. Quality score analysis showed that Sanger validation was not required for 95% of variants. Our overall diagnostic rate was 42%, but this varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. Conclusions These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas.
American Journal of Human Genetics | 2014
A. Eliot Shearer; Robert W. Eppsteiner; Kevin T. Booth; Sean S. Ephraim; José Gurrola; Allen C. Simpson; E. Ann Black-Ziegelbein; Swati Joshi; Harini Ravi; Angelica Giuffre; Scott Happe; Michael S. Hildebrand; Hela Azaiez; Yildirim A. Bayazit; Mehmet Emin Erdal; Jose A. Lopez-Escamez; Irene Gazquez; Marta L Tamayo; Nancy Gelvez; Greizy López Leal; Chaim Jalas; Josef Ekstein; Tao Yang; Shin-ichi Usami; Kimia Kahrizi; Niloofar Bazazzadegan; Hossein Najmabadi; Todd E. Scheetz; Terry A. Braun; Thomas L. Casavant
Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.
American Journal of Human Genetics | 2011
Guntram Borck; Atteeq U. Rehman; Kwanghyuk Lee; Hans Martin Pogoda; Naseebullah Kakar; Simon von Ameln; Nicolas Grillet; Michael S. Hildebrand; Zubair M. Ahmed; Gudrun Nürnberg; Muhammad Ansar; Sulman Basit; Qamar Javed; Robert J. Morell; Nabilah Nasreen; A. Eliot Shearer; Adeel Ahmad; Kimia Kahrizi; Rehan Sadiq Shaikh; Shaheen N. Khan; Ingrid Goebel; Nicole C. Meyer; William J. Kimberling; Jennifer A. Webster; Dietrich A. Stephan; Martin R. Schiller; Melanie Bahlo; Hossein Najmabadi; Peter G. Gillespie; Peter Nürnberg
By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jing Zheng; Katharine K. Miller; Tao Yang; Michael S. Hildebrand; A. Eliot Shearer; Adam P. DeLuca; Todd E. Scheetz; Jennifer Drummond; Steve Scherer; P. Kevin Legan; Richard J. Goodyear; Guy P. Richardson; Mary Ann Cheatham; Richard J.H. Smith; Peter Dallos
We report on a secreted protein found in mammalian cochlear outer hair cells (OHC) that is a member of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of adhesion proteins. Ceacam16 mRNA is expressed in OHC, and its protein product localizes to the tips of the tallest stereocilia and the tectorial membrane (TM). This specific localization suggests a role in maintaining the integrity of the TM as well as in the connection between the OHC stereocilia and TM, a linkage essential for mechanical amplification. In agreement with this role, CEACAM16 colocalizes and coimmunoprecipitates with the TM protein α-tectorin. In addition, we show that mutation of CEACAM16 leads to autosomal dominant nonsyndromic deafness (ADNSHL) at the autosomal dominant hearing loss (DFNA4) locus. In aggregate, these data identify CEACAM16 as an α-tectorin–interacting protein that concentrates at the point of attachment of the TM to the stereocilia and, when mutated, results in ADNSHL at the DFNA4 locus.
Genome Biology | 2011
Katherine R. Smith; Catherine J. Bromhead; Michael S. Hildebrand; A. Eliot Shearer; Paul J. Lockhart; Hossein Najmabadi; Richard J. Leventer; George McGillivray; David J. Amor; Richard J.H. Smith; Melanie Bahlo
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.
Genome Medicine | 2014
A. Eliot Shearer; Diana L. Kolbe; Hela Azaiez; Christina M. Sloan; Kathy L. Frees; Amy E Weaver; Erika T Clark; Carla Nishimura; E. Ann Black-Ziegelbein; Richard J.H. Smith
BackgroundCopy number variants (CNVs) are a well-recognized cause of genetic disease; however, methods for their identification are often gene-specific, excluded as ‘routine’ in screens of genetically heterogeneous disorders, and not implemented in most next-generation sequencing pipelines. For this reason, the contribution of CNVs to non-syndromic hearing loss (NSHL) is most likely under-recognized. We aimed to incorporate a method for CNV identification as part of our standard analysis pipeline and to determine the contribution of CNVs to genetic hearing loss.MethodsWe used targeted genomic enrichment and massively parallel sequencing to isolate and sequence all exons of all genes known to cause NSHL. We completed testing on 686 patients with hearing loss with no exclusions based on type of hearing loss or any other clinical features. For analysis we used an integrated method for detection of single nucleotide changes, indels and CNVs. CNVs were identified using a previously published method that utilizes median read-depth ratios and a sliding-window approach.ResultsOf 686 patients tested, 15.2% (104) carried at least one CNV within a known deafness gene. Of the 38.9% (267) of individuals for whom we were able to determine a genetic cause of hearing loss, a CNV was implicated in 18.7% (50). We identified CNVs in 16 different genes including 7 genes for which no CNVs have been previously reported. CNVs of STRC were most common (73% of CNVs identified) followed by CNVs of OTOA (13% of CNVs identified).ConclusionCNVs are an important cause of NSHL and their detection must be included in comprehensive genetic testing for hearing loss.
Current Opinion in Pediatrics | 2012
A. Eliot Shearer; Richard J.H. Smith
Purpose of review To provide an update on recently discovered human deafness genes and to describe advances in comprehensive genetic testing platforms for deafness, both of which have been enabled by new massively parallel sequencing technologies. Recent findings Over the review period, three syndromic and six nonsyndromic deafness genes have been discovered, bringing the total number of nonsyndromic deafness genes to 64. Four studies have shown the utility of massively parallel sequencing for comprehensive genetic testing for deafness. Three of these platforms have been released on a clinical or commercial basis. Summary Deafness is the most common sensory deficit in humans. Genetic diagnosis has traditionally been difficult due to extreme genetic heterogeneity and a lack of phenotypic variability. For these reasons, comprehensive genetic screening platforms have been developed with the use of massively parallel sequencing. These technologies are also accelerating the pace of gene discovery for deafness. Because genetic diagnosis is the basis for molecular therapies, these advances lay the foundation for the clinical care of deaf and hard-of-hearing persons in the future.
Hearing Research | 2011
A. Eliot Shearer; Michael S. Hildebrand; Christina M. Sloan; Richard J.H. Smith
Our understanding of hereditary hearing loss has greatly improved since the discovery of the first human deafness gene. These discoveries have only accelerated due to the great strides in DNA sequencing technology since the completion of the human genome project. Here, we review the immense impact that these developments have had in both deafness research and clinical arenas. We review commonly used genomic technologies as well as the application of these technologies to the genetic diagnosis of hereditary hearing loss and to the discovery of novel deafness genes.